首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7573篇
  免费   637篇
  国内免费   317篇
电工技术   246篇
综合类   394篇
化学工业   3717篇
金属工艺   704篇
机械仪表   145篇
建筑科学   714篇
矿业工程   116篇
能源动力   119篇
轻工业   417篇
水利工程   80篇
石油天然气   194篇
武器工业   53篇
无线电   200篇
一般工业技术   1023篇
冶金工业   241篇
原子能技术   125篇
自动化技术   39篇
  2024年   44篇
  2023年   138篇
  2022年   226篇
  2021年   245篇
  2020年   189篇
  2019年   170篇
  2018年   172篇
  2017年   230篇
  2016年   208篇
  2015年   246篇
  2014年   377篇
  2013年   437篇
  2012年   583篇
  2011年   605篇
  2010年   416篇
  2009年   492篇
  2008年   360篇
  2007年   475篇
  2006年   507篇
  2005年   394篇
  2004年   346篇
  2003年   278篇
  2002年   236篇
  2001年   211篇
  2000年   172篇
  1999年   140篇
  1998年   106篇
  1997年   93篇
  1996年   81篇
  1995年   85篇
  1994年   62篇
  1993年   49篇
  1992年   46篇
  1991年   22篇
  1990年   19篇
  1989年   13篇
  1988年   14篇
  1987年   7篇
  1986年   8篇
  1985年   7篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1959年   1篇
  1951年   1篇
排序方式: 共有8527条查询结果,搜索用时 62 毫秒
1.
The corrosion mechanisms of T24, T92, VM12, and AISI 304 steels are studied under the influence of NaCl–KCl, NaCl–Na2SO4, and KCl–K2SO4 salt mixtures in a dry air atmosphere at 650°C for 15 days. NaCl–KCl was the most aggressive deposit and AISI 304 stainless steel exhibited the highest corrosion resistance. There was no relation between the Cr content of the ferritic steels and their corrosion resistance in NaCl–KCl. In contrast, the resistance of high-Cr steels was better when exposed to NaCl–Na2SO4 and KCl–K2SO4. The high-Cr and the low-Cr steels were more susceptible to NaCl–Na2SO4 and to KCl–K2SO4, respectively.  相似文献   
2.
Rare-earth ions doped Ca0.9R0.1CeNbMoO8 (R = Y, Sm, Nd, La) ceramics have been successfully prepared by solid-state method, and their modifications to the microstructure and electrical properties are also investigated. The rare-earth ions doped ceramics exhibit the scheelite structure. With the increase in the radius of rare-earth ions, the lattice distortion and bond interaction will be enhanced, and the consistency of grain size will be reduced. The ceramics exhibit negative temperature coefficient (NTC) thermistor characteristics in the temperature range of 473 K-1273 K, and the activation energy decreases with the increase of the radius of rare-earth ions. Rare-earth ions doping can increase the content of Ce3+ ions and promote the conductivity of ceramics. Except for Sm3+-doped ceramics, the high-temperature aging rate of other ceramics is less than 2%. The existence of some metastable Sm2+ ions in Sm3+-doped ceramics not only increases the activation energy, but also reduces the high-temperature stability of the ceramics.  相似文献   
3.
Thermosetting materials are widely used as encapsulation in the electrical packaging to protect the core electronic components from external force, moisture, dust, and other factors. However, the spreading and curing behaviors of such kind of fluid on a heated surface have been rarely explored. In this study, we experimentally and numerically investigated the spreading and curing behaviors of the silicone(OE6550 A/B, which is widely used in the light-emitting diode packaging) droplet with diameter of ~2.2 mm on a heated surface with temperature ranging from 25 ℃ to 250 ℃. For the experiments, we established a setup with high-speed camera and heating unit to capture the fast spreading process of the silicone droplet on the heated surface. For the numerical simulation, we built a viscosity model of the silicone by using the Kiuna's model and combined the viscosity model with the Volume of Fluid(VOF) model by the User Defined Function(UDF) method. The results show that the surface temperature significantly affected the spreading behaviors of the silicone droplet since it determines the temperature and viscosity distribution inside the droplet. For surface temperature varied from 25 ℃ to 250 ℃, the final contact radius changed from ~2.95 mm to ~1.78 mm and the total spreading time changed from ~511 s to ~0.15 s. By further analyzing the viscosity evolution of the droplet, we found that the decreasing of the total spreading time was caused by the decrease of the viscosity under high surface temperature at initial spreading stage, while the reduction of the final contact radius was caused by the curing of the precursor film. This study supplies a strategy to tuning the spreading and curing behavior of silicone by imposing high surface temperature, which is of great importance to the electronic packaging.  相似文献   
4.
The development of bio‐based thermosetting resins with good thermal stability can potentially afford sustainable polymers as replacements for petroleum‐based polymers. We report a practical route to a novel catechin‐based phthalonitrile resin precursor (CA‐Ph), which contains free phenolic hydroxyl groups that result in ‘self‐curing’ at elevated temperatures to afford a thermostable polymer. Comparison of the performance of this CA‐Ph resin with that of a conventional petroleum‐based bisphenol A phthalonitrile resin (BPA‐Ph; containing 5 wt% of the curing agent 4,4′‐diaminodiphenylsulfone) revealed that CA‐Ph exhibits a lower melting point and curing temperature. Cured CA‐Ph resin retains 95% of its weight at 520 °C under a nitrogen atmosphere, which compares favorably with results obtained for BPA‐Ph resin that retains 95% of its weight at a lower temperature of 484 °C. Kinetic results indicated that the curing reactions of both CA‐Ph and BPA‐Ph systems follow an autocatalytic mechanism. These results suggest that catechin is a useful bio‐based feedstock for the preparation of self‐curing and thermally stable phthalonitrile resins for advanced technological applications. © 2017 Society of Chemical Industry  相似文献   
5.
From the perspectives of scientific researches and practical applications, it is desirable to explore high operating temperature ferromagnetic films. The effect of biaxial strain on magnetic properties of (110)-oriented La0.7Sr0.3MnO3 films was studied. High quality La0.7Sr0.3MnO3 films were grown on (110)-oriented perovskite single crystal substrates using pulsed laser deposition, varying substrate-induced misfit strains from ??2.27–0.75%. A remarkable enhancement of Curie temperature has been achieved for (110)-oriented La0.7Sr0.3MnO3 films clamped with small misfit strains (i.e., grown on LAST (110)). The enhanced Curie temperature of (110)-oriented La0.7Sr0.3MnO3 films could be attributed to the misfit strain between the films and the underlying substrates and may have technological implication for applications at high temperature environments.  相似文献   
6.
7.
Superabsorbent polymers (SAP) can be used as a means for internal curing of concrete. In the present study, the development of transport properties of concrete with SAP is investigated. The chloride migration coefficient according to NT BUILD 492 is used as a measure of this. Twenty concrete mixtures are tested 7, 14, and 28 days after casting. The development of degree of hydration is followed for 20 corresponding paste mixtures.Both when SAP is added with extra water to compensate the SAP water absorption in fresh concrete and without extra water, the internal curing water held by SAP may contribute to increase the degree of hydration. No matter if SAP is added with or without extra water, it appears that the so-called gel space ratio can be used as a key parameter to link age and mixture proportions (water-to-cement ratio and SAP dosage) to the resulting chloride migration coefficient; the higher the volume of gel solid relative to the space available for it, the lower the chloride migration coefficient, because the pore system becomes more tortuous and the porosity becomes less.  相似文献   
8.
We propose the question of the modulated structures of copper oxide is caused by the [CuO2] in-plane oxygen vacancy or apical oxygen vacancy. Sr2CuO3+δ single-crystal samples were prepared using high-temperature and high-pressure methods. The major phase of Sr2CuO3+δ (δ = 0.4) single-crystal system is found to be constituted by the 5 a modulated structure with the Fmmm space group, which originates from the [CuO2] in-plane oxygen vacancy appearing in octahedral Cu-O. Besides, the presence of the [CuO2] in-plane oxygen vacancy may obliterate the superconductivity of the system. Experimental results deduce that the oxygen vacancy may appear in the apical oxygen sites in high-temperature copper oxide superconductors.  相似文献   
9.
Cyclomatrix phosphazene–triazine network polymers were synthesized by co‐curing a blend of tris(2‐allylphenoxy), triphenoxy cyclotriphosphazene (TAP), and tris(2‐allylphenoxy) s‐triazine (TAT) with bis(4‐maleimido phenyl) methane (BMM). The co‐curing of the three‐component resin was investigated by dynamic mechanical analysis using rheometry. The cure kinetics of the Diels–Alder step was studied by examining the evolution of the rheological parameters, such as storage modulus (G′), loss modulus (G″), and complex viscosity (η*), for resins of varying compositions at different temperatures. The curing conformed to an overall second‐order phenomenological equation, taking into account a self‐acceleration effect. The kinetic parameters were evaluated by multiple‐regression analysis. The absence of a definite trend in the cure process with blend composition ratio was attributed to the occurrence of a multitude of competitive reactions whose relative rates depend on the reactant ratio and the concentration of the products formed from the initial phase of reaction. The cure was accelerated by temperature for a given composition, whereas the self‐acceleration became less prominent at higher temperature. Gelation was accelerated by temperature. The gel conversion decreased with increase in maleimide concentration and, for a given composition, it was independent of the cure temperature. The activation energy for the initial reaction and the crosslinking process were estimated for a composition with a maleimide‐to‐allyl ratio of 2 : 1. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 908–914, 2003  相似文献   
10.
When examined using continuous wave electron paramagnetic resonance and nuclear magnetic resonance spectrometers, the highT c superconductors give rise to intense, low field, ‘non-resonant’ absorption signals in the superconducting state. This phenomenon can be used as a highly sensitive, contactless technique for the detection and characterization of superconductivity even in samples containing only minute amounts of the superconducting phase. Further, it can also be applied to the determination of material parameters of interest such asJ c andH c2 in addition to being a powerful way of distinguishing between weak-link superconductivity and bulk superconductivity. The details of these aspects are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号