首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8240篇
  免费   781篇
  国内免费   372篇
电工技术   258篇
综合类   579篇
化学工业   3117篇
金属工艺   401篇
机械仪表   163篇
建筑科学   1359篇
矿业工程   132篇
能源动力   222篇
轻工业   240篇
水利工程   63篇
石油天然气   211篇
武器工业   28篇
无线电   583篇
一般工业技术   1698篇
冶金工业   217篇
原子能技术   81篇
自动化技术   41篇
  2024年   17篇
  2023年   147篇
  2022年   147篇
  2021年   195篇
  2020年   241篇
  2019年   255篇
  2018年   248篇
  2017年   278篇
  2016年   293篇
  2015年   301篇
  2014年   411篇
  2013年   437篇
  2012年   586篇
  2011年   616篇
  2010年   426篇
  2009年   521篇
  2008年   399篇
  2007年   612篇
  2006年   488篇
  2005年   436篇
  2004年   372篇
  2003年   305篇
  2002年   302篇
  2001年   247篇
  2000年   224篇
  1999年   144篇
  1998年   112篇
  1997年   110篇
  1996年   96篇
  1995年   71篇
  1994年   74篇
  1993年   36篇
  1992年   55篇
  1991年   46篇
  1990年   57篇
  1989年   55篇
  1988年   7篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   5篇
  1983年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1951年   3篇
排序方式: 共有9393条查询结果,搜索用时 15 毫秒
1.
A digital light processing (DLP) technology has been developed for 3D printing lead-free barium titanate (BTO) piezoelectric ceramics. By comparing the curing and rheological properties of slurries with different photosensitive monomer, a high refractive index monomer acryloyl morpholine (ACMO) was chosen, and a design and preparation method of BTO slurry with high solid content, low viscosity and high curing ability was proposed. By further selecting the printing parameters, the single-layer exposure time was reduced and the forming efficiency has been greatly improved. Sintered specimens were obtained after a nitrogen-air double-step debinding and furnace sintering process, and the BTO ceramics fabricated with 80 wt% slurry shows the highest relative density (95.32 %) and piezoelectric constant (168.1 pC/N). Furthermore, complex-structured BTO ceramics were prepared, impregnated by epoxy resin and finally assembly made into hydrophones, which has significance for the future design and manufacture of piezoelectric ceramic-based composites that used in functional devices.  相似文献   
2.
《Ceramics International》2021,47(18):25883-25894
Oily wastewater treatment is a global challenge due to the substantial amount of effluent resulted from many industrial and domestic activities. To overcome the challenge of using existing treatment approach and fouling, superoleophobic coatings were fabricated. In this study, a superoleophobic membrane surface was obtained using the sol-gel technique with perfluorooctanoate (PFO), poly (diallyl dimethylammonium chloride) (PDADMAC), and nanoparticles as complex-polymer nanocomposites. The effects of coating cycles on the surface structure, chemical properties, surface chemistry, and oleophobicity of the surface were examined using field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and oil contact angle measurement. The results showed that the coated layer successfully adhered to the substrate surface. However, the chemical stability with respect to oil contact angle (OCA) revealed a decline at pH 7 and pH 9 and maintained stability at pH 3. Besides, oil flux at 63.0 L/m2. h was achieved for PDADMAC-Al2O3/44 wt% PFO and the highest separation efficiency of 98% was obtained. Furthermore, the oil rejection decreases as the oil concentration increases from 1 to 3 g/L. OCA of 155° was obtained after 5 coating cycles. Apart from mitigating substrate fouling, the superoleophobic and superhydrophilic coating can be applied to a ceramic-based hollow fibre membrane and efficiently used for the separation of oil from oily wastewater.  相似文献   
3.
The aim of this study was to develop high dielectric constant flexible polymers with a highly efficient and cost‐effective approach using acrylonitrile butadiene rubber (NBR) as the polymer matrix and barium titanate (BT) as the high dielectric constant filler. The BT powder was synthesized with a solid‐state reaction and was characterized using a particle size analyzer, XRD, SEM and Fourier transform infrared spectroscopy. NBR/BT composites were fabricated using an internal mixer with various BT loadings up to 160 phr. The influence of BT loading on the cure characteristics and mechanical, dynamic mechanical, thermal, dielectric and morphological properties was determined. The incorporation of BT in the NBR matrix shortened scorch time and increased delta torque. The mechanical properties, thermal stability and dielectric constant were greatly improved and increased with BT loading. The results suggest that the reinforcement effect was achieved due to strong hydrogen bonding or polar–polar interactions between NBR matrix and BT filler. This is further corroborated by the good dispersion of BT filler in the NBR matrix observed with SEM imaging. These findings can be applied to produce high‐performance dielectric elastomers. © 2020 Society of Industrial Chemistry  相似文献   
4.
A novel TiO2 thin film was prepared on the ceramic hollow fiber by the sol-gel method using poly(vinylpyrrolidone) (PVP) and polyvinyl alcohol (PVA) as additives. SEM images verified the formation of TiO2 layer with various thickness using different composition of titania sols. The effect of the PVP and PVA contents on the TiO2 sol properties, the separation and the antifouling performance of the ultrafiltration membranes were investigated thoroughly. When the contents of PVP and PVA were 1.0 wt% and 0.8 wt%, respectively, the resultant membrane showed a thickness of 0.55 μm with a pure water flux of 255 L m?2 h?1. In addition, the adherent foulant bovine serum albumin was applied to evaluate the antifouling performance. During the three fouling-recovery cycles, the flux recovery ratio and the flux decay ratio maintained about 99% and 30%. The BSA flux and rejection were still 169 L m?2 h?1 and 96.9% after the cycles, indicating a superior antifouling property.  相似文献   
5.
A strategy that constructs the morphotropic phase boundary and manipulates the domain structure has been used to design the component of 0.96[Bi0.5(Na0.84K0.16)0.5Ti(1-x)NbxO3]-0.04SrTiO3 (BNKT-4ST-100xNb) to enhance the strain properties for actuator application. Non-equivalent Nb5+ donor doping modulates the phase transition from the mixture of rhombohedral and tetragonal phases to the pseudocubic phase and results in the coexistence of multiple phases. Moreover, the high-resolution TEM confirms the existence of polar nano regions that contribute to the macroscopic relaxor behaviour. The size of the domains is reduced with increasing Nb5+, resulting in an enhanced relaxor behaviour. The ferroelectric-relaxor transition temperature decreases from 85 to below 30 °C, implying a non-ergodic to ergodic relaxor transition. An improved strain of 0.56% and a giant normalized strain of 1120 pm/V were achieved for BNKT-4ST-1.5Nb, which were attributed to the unique domain structure in which nanodomains are embedded in an undistorted cubic matrix. Ferroelectric, antiferroelectric, and relaxor phases coexist. As the electric field is large enough, a reversible phase transition occurs. Furthermore, good temperature stability was obtained due to the stability of the nanodomains, and no degradation in strains was observed even after 104 cycles, which may originate from the reversible phase transition and dynamic domain wall. The results show that this design strategy offers a reference way to improve the strain behaviour and that BNKT-4ST-100xNb ceramics could be a potential material for high-displacement actuator applications.  相似文献   
6.
Sr0.9La0.1TiO3 based textured ceramics (SLTT-S3T) with a texture fraction of 0.81 are successfully fabricated by the reactive template grain growth method, in which Sr0.9La0.1TiO3/20 wt%Ti was used as matrix and 10 wt% plate-like Sr3Ti2O7 template seeds were used as templates. The phase transition, microstructure evolution, and the anisotropic thermoelectric properties of SLTT-S3T ceramics were investigated. The results show that the ceramics are mainly composed of Sr0.9La0.1TiO3 and rutile TiO2 phases. Grains grow with a preferred orientation along (h00). A maximum ZT of 0.26 at 1073 K was achieved in the direction perpendicular to the tape casting direction. The low lattice thermal conductivity of 1.9 W/(m K) at 1073 K was obtained decreased by 34%, 40%, and 38% compared with non-textured, SrTiO3 and Sr0.9La0.1TiO3 ceramics prepared by the same process, can be attributed to the enhanced phonon scattering by the complex multi-scale boundaries and interfaces. This work provides a strategy of microstructural design for thermoelectric oxides to decrease intrinsic lattice thermal conductivity and further regulate thermoelectric properties via texture engineering.  相似文献   
7.
8.
9.
《Ceramics International》2020,46(2):1990-2001
An overview of research on the synthesis of manganese titanates is presented. The xerogel of Mn–Ti–O–C–H composition was synthesized from manganese acetate and titanium tetrabutylate via liquid-phase method using organic solvents. The calcination of xerogel in air at 450 °C and 700 °C yielded manganese titanate precursors in the form of a nanostructured mixture of Mn2O3 and TiO2. Annealing at 1000 °C, manganese metatitanate MnTiO3 was obtained. Reference experiments with initial reagents included, separately, thermal decomposition of Mn(CH3COO)2×4H2O and the product of Ti(OC4H9)4 hydrolysis. The composition, structure, and properties of the products were studied using X-ray diffraction, scanning electron microscopy, elemental analysis, diffuse reflectance IR Fourier spectroscopy, thermogravimetry, and by measuring specific surface area. The data presented by these different techniques are basically consistent with each other (with an increase in the annealing temperature, an increase in globule size and decrease in specific surface area are observed; structuring occurs within the long- and short-range order; the size of the crystallites does not exceed that of the globules; elemental composition correlates with phase composition; the endothermic character of the reaction of MnTiO3 formation at 900 °C is confirmed by a thermodynamic calculation). Nevertheless, some unexpected effects were revealed (based on the FTIR diffuse reflection spectra, mixed oxide Mn–Ti–O is formed in the surface layer of particles already at 450 °C and 700 °C; etc.). Application of the proposed technique for modifying Al2O3 powders, with the aim of implementing low-temperature sintering of corundum ceramics, is discussed.  相似文献   
10.
《Ceramics International》2020,46(15):24213-24224
We report an experimental approach, designed based on the recent findings that domain switching in ferroelectric ceramics can be separated into three regimes during antiparallel electric field loading, to investigate the influence of domain switching process on the electrical fatigue behavior of ferroelectrics. Uniaxial compressive stress (−2 MPã -100 MPa) and thermal loading (20 °C–150 °C) were used to tune the domain switching process. Under the same loading condition, the bipolar electrical fatigue behavior of soft lead zirconate titanate ceramics was systematically characterized. The amplitude and frequency of the applied electric field are 2 kV/mm and 10 Hz, respectively. By analyzing the evolution of the domain switching process, combined with the measured polarization and strain response, as well as the cracks observed on the surface of the specimen, it is found that the fatigue of ferroelectric ceramics was mainly related to the domain switching process near the coercive electric field: the regime 2 defined in this paper. The underlying mechanism was further discussed by considering the interplay between the domain switching process with the main factors affecting the electrical fatigue of ferroelectrics, namely defect redistribution, charge carrier injection, and crack initiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号