首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   8篇
化学工业   45篇
轻工业   1篇
  2024年   1篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   6篇
  2015年   2篇
  2014年   6篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2004年   2篇
  1999年   3篇
  1982年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.
综述了环状内酰胺羰基烷基化的各种反应,探讨了各种方法的机理,以及各种方法的优劣.  相似文献   
2.
Potassium hydroxide‐catalyzed hydrosilylation exhibits excellent activity and chemoselectivity for the reduction of cyclic imides under mild reaction conditions. The chemoselectivity of the reduction system may be readily tuned by changing the identity and stoichiometry of the hydrosilanes: a polymethylhydrosiloxane (PMHS)/potassium hydroxide reduction system resulted in the reduction of various cyclic imides to the corresponding ω‐hydroxylactams in 70–94% yield, while the diphenylsilane (Ph2SiH2)/potassium hydroxide reduction system selectively afforded the aryl lactams in 33–95% yield. These catalytic protocols tolerate diverse functional groups and are easy to scale up.

  相似文献   

3.
4.
The nucleophilic addition of carbon nucleophiles to amides has traditionally been a difficult task, both due to reactivity and selectivity problems. When successful, these processes would represent straightforward routes towards carbonyl‐type or amine compounds, depending on the fate of the generated tetrahedral intermediate. The direct addition of nucleophiles to amides for the preparation of ketones has been studied and applied to the syntheses of several natural products. On the other hand, the addition of nucleophiles to amides to obtain substituted amines represented a major challenge, and only scattered applications on particular substrates have appeared. Initial improvements were based on the activation of amides by introduction of particular substituents, such as in N‐methoxy amides (Weinreb amides) or electron‐withdrawing groups able to increase the carbon nucleophilicity. Although these strategies facilitate the introduction of nucleophiles, chemoselectivity issues arise when additional electrophilic moieties (i.e., carbonyls) are present, thus decreasing the versatility of the methods. In recent years, important advancements towards fully chemoselective methods have been realized. The capture of tetrahedral intermediates with acids generates highly electrophilic iminium species able to undergo chemoselective additions of various nucleophiles, thus accessing substituted amines. Alternatively, the in situ generation of an iminium triflate ion allows highly chemoselective additions of nucleophiles, yielding amines, ketones or ketimines. Also thioamides can be used as precursors of ketones or α‐substituted amines. The success of the above methodologies is further showcased by the application in various syntheses of natural products or biologically active molecules.

  相似文献   

5.
6.
Grasshoppers are the most commonly eaten insects by humans worldwide, as they are rich in proteins and micronutrients. This study aimed to assess the occurrence of transferable antibiotic resistance genes in commercialized edible grasshoppers. To this end, the prevalence of 12 selected genes [aac(6’)‐Ie aph(2″)‐Ia, blaZ, erm(A), erm(B), erm(C), mecA, tet(M), tet(O), tet(S), tet(K), vanA, vanB] coding for resistance to antibiotics conventionally used in clinical practice was determined. The majority of samples were positive for tet(M) (70.0%), tet(K) (83.3%) and blaZ (83.3%). A low percentage of samples were positive for erm(B) (16.7%), erm(C) (26.7%), and aac(6’)‐Ie aph(2″)‐Ia (13.3%), whereas no samples were positive for erm(A), vanA, vanB, tet(O), and mecA. Cluster analysis identified 4 main clusters, allowing a separation of samples on the basis of their country of origin.  相似文献   
7.
The increasing emergence of multidrug-resistant microorganisms is one of the greatest challenges in the clinical management of infectious disease. New antimicrobial agents are therefore urgently required, particularly in the treatment of chronic and recurrent infections often associated with antibiotic-resistant pathogens, as in the case of cystic fibrosis (CF) patients. This study reports the antibacterial activity of a series of monocyclic β-lactams with an alkylidenecarboxyl chain or electron-withdrawing groups such as 4-OAc, 4-SAc, and 4-SO(2)Ph at the C4 position of the ring. N-Unsubstituted and N-thiomethyl derivatives were compared. A total of 33 azetidinones were tested for their activity against Gram-positive and Gram-negative bacterial clinical isolates. The combination of an N-thiomethyl group and a benzyl ester on the 4-alkylidene side chain were found to increase the potency against Gram-positive bacteria. The N-thiomethyl group clearly elevated the activity of 4-acetoxyazetidinones relative to the corresponding NH derivatives. The most active compounds showed minimum inhibitory concentration (MIC) values of 4 and 8 mg L(-1) against methicillin-resistant Staphylococcus aureus isolated from pediatric patients with CF.  相似文献   
8.
Isopenicillin N synthase (IPNS) converts the linear tripeptide δ‐(L ‐α‐aminoadipoyl)‐L ‐cysteinyl‐D ‐valine (ACV) into bicyclic isopenicillin N (IPN) in the central step in the biosynthesis of penicillin and cephalosporin antibiotics. Solution‐phase incubation experiments have shown that IPNS turns over analogues with a diverse range of side chains in the third (valinyl) position of the substrate, but copes less well with changes in the second (cysteinyl) residue. IPNS thus converts the homologated tripeptides δ‐(L ‐α‐aminoadipoyl)‐L ‐homocysteinyl‐D ‐valine (AhCV) and δ‐(L ‐α‐aminoadipoyl)‐L ‐homocysteinyl‐D ‐allylglycine (AhCaG) into monocyclic hydroxy‐lactam products; this suggests that the additional methylene unit in these substrates induces conformational changes that preclude second ring closure after initial lactam formation. To investigate this and solution‐phase results with other tripeptides δ‐(L ‐α‐aminoadipoyl)‐L ‐homocysteinyl‐D ‐Xaa, we have crystallised AhCV and δ‐(L ‐α‐aminoadipoyl)‐L ‐homocysteinyl‐D ‐S‐methylcysteine (AhCmC) with IPNS and solved crystal structures for the resulting complexes. The IPNS:FeII:AhCV complex shows diffuse electron density for several regions of the substrate, revealing considerable conformational freedom within the active site. The substrate is more clearly resolved in the IPNS:FeII:AhCmC complex, by virtue of thioether coordination to iron. AhCmC occupies two distinct conformations, both distorted relative to the natural substrate ACV, in order to accommodate the extra methylene group in the second residue. Attempts to turn these substrates over within crystalline IPNS using hyperbaric oxygenation give rise to product mixtures.  相似文献   
9.
An efficient electrochemically induced synthesis of chiral cis β‐lactams has been described, via deprotonation of chiral amides containing an acidic methylene group and a bromine atom as leaving group and bearing a chiral auxiliary or amine function. The electrogenerated base – cyanomethyl anion – is easily obtained by galvanostatic reduction of acetonitrile‐tetraethylammonium hexafluorophosphate solutions under very mild conditions. The yields are high and the cis‐diastereoselection complete. The use of starting chiral amides has allowed in many cases the preparation of the most abundant isomer in a pure form.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号