首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1341篇
  免费   125篇
  国内免费   162篇
电工技术   8篇
综合类   39篇
化学工业   760篇
金属工艺   113篇
机械仪表   82篇
建筑科学   67篇
矿业工程   1篇
能源动力   1篇
轻工业   121篇
武器工业   1篇
无线电   78篇
一般工业技术   110篇
冶金工业   32篇
原子能技术   50篇
自动化技术   165篇
  2024年   8篇
  2023年   40篇
  2022年   243篇
  2021年   370篇
  2020年   88篇
  2019年   63篇
  2018年   35篇
  2017年   57篇
  2016年   58篇
  2015年   55篇
  2014年   85篇
  2013年   87篇
  2012年   64篇
  2011年   60篇
  2010年   47篇
  2009年   20篇
  2008年   35篇
  2007年   34篇
  2006年   23篇
  2005年   29篇
  2004年   26篇
  2003年   8篇
  2002年   24篇
  2001年   9篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1997年   5篇
  1996年   7篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1990年   4篇
  1989年   1篇
  1987年   3篇
  1984年   2篇
  1980年   1篇
  1979年   2篇
  1956年   1篇
排序方式: 共有1628条查询结果,搜索用时 15 毫秒
1.
Hepatic fibrosis occurs when liver tissue becomes scarred from repetitive liver injury and inflammatory responses; it can progress to cirrhosis and eventually to hepatocellular carcinoma. Previously, we reported that neoagarooligosaccharides (NAOs), produced by the hydrolysis of agar by β-agarases, have hepatoprotective effects against acetaminophen overdose-induced acute liver injury. However, the effect of NAOs on chronic liver injury, including hepatic fibrosis, has not yet been elucidated. Therefore, we examined whether NAOs protect against fibrogenesis in vitro and in vivo. NAOs ameliorated PAI-1, α-SMA, CTGF and fibronectin protein expression and decreased mRNA levels of fibrogenic genes in TGF-β-treated LX-2 cells. Furthermore, downstream of TGF-β, the Smad signaling pathway was inhibited by NAOs in LX-2 cells. Treatment with NAOs diminished the severity of hepatic injury, as evidenced by reduction in serum alanine aminotransferase and aspartate aminotransferase levels, in carbon tetrachloride (CCl4)-induced liver fibrosis mouse models. Moreover, NAOs markedly blocked histopathological changes and collagen accumulation, as shown by H&E and Sirius red staining, respectively. Finally, NAOs antagonized the CCl4-induced upregulation of the protein and mRNA levels of fibrogenic genes in the liver. In conclusion, our findings suggest that NAOs may be a promising candidate for the prevention and treatment of chronic liver injury via inhibition of the TGF-β/Smad signaling pathway.  相似文献   
2.
The endothelial glycocalyx, the gel layer covering the endothelium, is composed of glycosaminoglycans, proteoglycans, and adsorbed plasma proteins. This structure modulates vessels’ mechanotransduction, vascular permeability, and leukocyte adhesion. Thus, it regulates several physiological and pathological events. In the present review, we described the mechanisms that disturb glycocalyx stability such as reactive oxygen species, matrix metalloproteinases, and heparanase. We then focused our attention on the role of glycocalyx degradation in the induction of profibrotic events and on the possible pharmacological strategies to preserve this delicate structure.  相似文献   
3.
Tumor cell aggregation is critical for cell survival following the loss of extracellular matrix attachment and dissemination. However, the underlying mechanotransduction of clustering solitary tumor cells is poorly understood, especially in non-small cell lung cancers (NSCLC). Here, we examined whether cell surface protrusions played an important role in facilitating the physical contact between floating cells detached from a substrate. We employed poly-2-hydroxyethyl methacrylate-based 3D culture methods to mimic in vivo tumor cell cluster formation. The suprastructural analysis of human NSCLC A549 cell spheroids showed that finger-like protrusions clung together via the actin cytoskeleton. Time-lapse holotomography demonstrated that the finger-like protrusions of free-floating cells in 3D culture displayed exploratory coalescence. Global gene expression analysis demonstrated that the genes in the organic hydroxyl transport were particularly enriched in the A549 cell spheroids. Particularly, the knockdown of the water channel aquaporin 3 gene (AQP3) impaired multicellular aggregate formation in 3D culture through the rearrangement of the actomyosin cytoskeleton. Moreover, the cells with reduced levels of AQP3 decreased their transmigration. Overall, these data indicate that cell detachment-upregulated AQP3 contributes to cell surface protrusions through actomyosin cytoskeleton remodeling, causing the aggressive aggregation of free-floating cells dependent on the property of the substratum and collective metastasis.  相似文献   
4.
Lung cancer is one of the most common malignant neoplasms. As a result of the disease’s progression, patients may develop metastases to the central nervous system. The prognosis in this location is unfavorable; untreated metastatic lesions may lead to death within one to two months. Existing therapies—neurosurgery and radiation therapy—do not improve the prognosis for every patient. The discovery of Epidermal Growth Factor Receptor (EGFR)—activating mutations and Anaplastic Lymphoma Kinase (ALK) rearrangements in patients with non-small cell lung adenocarcinoma has allowed for the introduction of small-molecule tyrosine kinase inhibitors to the treatment of advanced-stage patients. The Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein with tyrosine kinase-dependent activity. EGFR is present in membranes of all epithelial cells. In physiological conditions, it plays an important role in the process of cell growth and proliferation. Binding the ligand to the EGFR causes its dimerization and the activation of the intracellular signaling cascade. Signal transduction involves the activation of MAPK, AKT, and JNK, resulting in DNA synthesis and cell proliferation. In cancer cells, binding the ligand to the EGFR also leads to its dimerization and transduction of the signal to the cell interior. It has been demonstrated that activating mutations in the gene for EGFR-exon19 (deletion), L858R point mutation in exon 21, and mutation in exon 20 results in cancer cell proliferation. Continuous stimulation of the receptor inhibits apoptosis, stimulates invasion, intensifies angiogenesis, and facilitates the formation of distant metastases. As a consequence, the cancer progresses. These activating gene mutations for the EGFR are present in 10–20% of lung adenocarcinomas. Approximately 3–7% of patients with lung adenocarcinoma have the echinoderm microtubule-associated protein-like 4 (EML4)/ALK fusion gene. The fusion of the two genes EML4 and ALK results in a fusion gene that activates the intracellular signaling pathway, stimulates the proliferation of tumor cells, and inhibits apoptosis. A new group of drugs—small-molecule tyrosine kinase inhibitors—has been developed; the first generation includes gefitinib and erlotinib and the ALK inhibitor crizotinib. These drugs reversibly block the EGFR by stopping the signal transmission to the cell. The second-generation tyrosine kinase inhibitor (TKI) afatinib or ALK inhibitor alectinib block the receptor irreversibly. Clinical trials with TKI in patients with non-small cell lung adenocarcinoma with central nervous system (CNS) metastases have shown prolonged, progression-free survival, a high percentage of objective responses, and improved quality of life. Resistance to treatment with this group of drugs emerging during TKI therapy is the basis for the detection of resistance mutations. The T790M mutation, present in exon 20 of the EGFR gene, is detected in patients treated with first- and second-generation TKI and is overcome by Osimertinib, a third-generation TKI. The I117N resistance mutation in patients with the ALK mutation treated with alectinib is overcome by ceritinib. In this way, sequential therapy ensures the continuity of treatment. In patients with CNS metastases, attempts are made to simultaneously administer radiation therapy and tyrosine kinase inhibitors. Patients with lung adenocarcinoma with CNS metastases, without activating EGFR mutation and without ALK rearrangement, benefit from immunotherapy. This therapeutic option blocks the PD-1 receptor on the surface of T or B lymphocytes or PD-L1 located on cancer cells with an applicable antibody. Based on clinical trials, pembrolizumab and all antibodies are included in the treatment of non-small cell lung carcinoma with CNS metastases.  相似文献   
5.
为了系统地评价胸腺五肽作为辅助药物治疗各种肺癌的疗效及其对机体免疫功能的影响,利用电子检索收集有关胸腺五肽联合放疗或化疗方案治疗肺癌的临床随机对照试验文献,对符合纳入标准的文献,采用RevMan5.3 软件进行系统评价。最终共纳入文献 9 篇,总样本量 784 例。Meta 分析结果表明,胸腺五肽作为辅助药物治疗各种肺癌提高总有效率的差异无统计学意义[OR = 1.44, 95%CI(0.99, 2.10), P =0.06 > 0.05]。在对免疫功能的影响方面,胸腺五肽的使用显著增高外周血中的 CD3+ 细胞水平[OR = 5.88, 95% CI(2.34, 9.42), P =0.001],CD4+ 细胞水平也显著上升[OR =8.32, 95%CI(5.22, 11.42), P < 0.00001] , CD4+ /CD8+比值也有明显的提高[OR = 0.38, 95% CI(0.18, 0.59), P=0.0002],但 CD8+ 细胞水平的差异无统计学意义[OR =-3.12, 95% CI ( -9.02, 2.79), P >0.05]。总的来说,本研究在一定程度上反映了在辅助治疗肺癌方面,胸腺五肽能显著提高外周血中的 CD3+ 细胞水平、CD4+ 细胞水平、CD4+/CD8+ 比值。而对于治疗的有效率、CD8+ 细胞水平,差异无统计学意义。  相似文献   
6.
Assessment of biological diagnostic factors providing clinically-relevant information to guide physician decision-making are still needed for diseases with poor outcomes, such as non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) is a promising molecule in the clinical management of NSCLC. While the EGFR transmembrane form has been extensively investigated in large clinical trials, the soluble, circulating EGFR isoform (sEGFR), which may have a potential clinical use, has rarely been considered. This study investigates the use of sEGFR as a potential diagnostic biomarker for NSCLC and also characterizes the biological function of sEGFR to clarify the molecular mechanisms involved in the course of action of this protein. Plasma sEGFR levels from a heterogeneous cohort of 37 non-advanced NSCLC patients and 54 healthy subjects were analyzed by using an enzyme-linked immunosorbent assay. The biological function of sEGFR was analyzed in vitro using NSCLC cell lines, investigating effects on cell proliferation and migration. We found that plasma sEGFR was significantly decreased in the NSCLC patient group as compared to the control group (median value: 48.6 vs. 55.6 ng/mL respectively; p = 0.0002). Moreover, we demonstrated that sEGFR inhibits growth and migration of NSCLC cells in vitro through molecular mechanisms that included perturbation of EGF/EGFR cell signaling and holoreceptor internalization. These data show that sEGFR is a potential circulating biomarker with a physiological protective role, providing a first approach to the functional role of the soluble isoform of EGFR. However, the impact of these data on daily clinical practice needs to be further investigated in larger prospective studies.  相似文献   
7.
There is an urgent need for identification of new prognostic markers and therapeutic targets for non-small cell lung cancer (NSCLC). In this study, we evaluated immune cells markers in 100 NSCLC specimens. Immunohistochemical analysis revealed no prognostic value for the markers studied, except CD163 and CD206. At the same time, macrophage markers iNOS and CHID1 were found to be expressed in tumor cells and associated with prognosis. We showed that high iNOS expression is a marker of favorable prognosis for squamous cell lung carcinoma (SCC), and NSCLC in general. Similarly, high CHID1 expression is a marker of good prognosis in adenocarcinoma and in NSCLC in general. Analysis of prognostic significance of a high CHID1/iNOS expression combination showed favorable prognosis with 20 months overall survival of patients from the low CHID1/iNOS expression group. For the first time, we demonstrated that CHID1 can be expressed by NSCLC cells and its high expression is a marker of good prognosis for adenocarcinoma and NSCLC in general. At the same time, high expression of iNOS in tumor cells is a marker of good prognosis in SCC. When used in combination, CHID1 and iNOS show a very good prognostic capacity for NSCLC. We suggest that in the case of lung cancer, tumor-associated macrophages are likely ineffective as a therapeutic target. At the same time, macrophage markers expressed by tumor cells may be considered as targets for anti-tumor therapy or, as in the case of CHID1, as potential anti-tumor agents.  相似文献   
8.
The presence of calcium deposits in human lesions is largely used as imaging biomarkers of human diseases such as breast cancer. Indeed, the presence of micro- or macrocalcifications is frequently associated with the development of both benign and malignant lesions. Nevertheless, the molecular mechanisms involved in the formation of these calcium deposits, as well as the prognostic significance of their presence in human tissues, have not been completely elucidated. Therefore, a better characterization of the biological process related to the formation of calcifications in different tissues and organs, as well as the understanding of the prognostic significance of the presence of these calcium deposits into human tissues could significantly improve the management of patients characterized by microcalcifications associated lesions. Starting from these considerations, this narrative review highlights the most recent histopathological and molecular data concerning the formation of calcifications in breast, thyroid, lung, and ovarian diseases. Evidence reported here could deeply change the current point of view concerning the role of ectopic calcifications in the progression of human diseases and also in the patients’ management. In fact, the presence of calcifications can suggest an unfavorable prognosis due to dysregulation of normal tissues homeostasis.  相似文献   
9.
The aim of this work was the development of microstructured lipid carriers (MLC) based on chitosan (CH) and containing N-acetylcysteine (NAC), a mucolytic and antioxidant agent, to inhibit the formation of Pseudomonas aeruginosa biofilm. MLC were prepared using the high shear homogenization technique. The MLC were characterized for morphology, particle size, Z potential, encapsulation efficiency and drug release. The antioxidant properties of NAC-loaded microstructured carriers were evaluated through an in vitro spectrophotometer assay. Finally, the activity of NAC-CH-MLC on biofilm production by Pseudomonas aeruginosa was also evaluated. Results obtained from this study highlighted that the use of chitosan into the inner aqueous phase permitted to obtain microstructured particles with a narrow size range and with good encapsulation efficiency. NAC-loaded MLC showed higher antioxidant activity than the free molecule, demonstrating how encapsulation increases the antioxidant effect of the molecule. Furthermore, the reduction of biofilm growth resulted extremely high with MLC being 64.74% ± 6.2% and 83.74% ± 9.95%, respectively, at 0.5 mg/mL and 2 mg/mL. In conclusion, this work represents a favorable technological strategy against diseases in which bacterial biofilm is relevant, such as cystic fibrosis.  相似文献   
10.
Fibrosis is a hallmark of adverse cardiac remodeling, which promotes heart failure, but it is also an essential repair mechanism to prevent cardiac rupture, signifying the importance of appropriate regulation of this process. In the remodeling heart, cardiac fibroblasts (CFs) differentiate into myofibroblasts (MyoFB), which are the key mediators of the fibrotic response. Additionally, cardiomyocytes are involved by providing pro-fibrotic cues. Nuclear receptor Nur77 is known to reduce cardiac hypertrophy and associated fibrosis; however, the exact function of Nur77 in the fibrotic response is yet unknown. Here, we show that Nur77-deficient mice exhibit severe myocardial wall thinning, rupture and reduced collagen fiber density after myocardial infarction and chronic isoproterenol (ISO) infusion. Upon Nur77 knockdown in cultured rat CFs, expression of MyoFB markers and extracellular matrix proteins is reduced after stimulation with ISO or transforming growth factor–β (TGF-β). Accordingly, Nur77-depleted CFs produce less collagen and exhibit diminished proliferation and wound closure capacity. Interestingly, Nur77 knockdown in neonatal rat cardiomyocytes results in increased paracrine induction of MyoFB differentiation, which was blocked by TGF-β receptor antagonism. Taken together, Nur77-mediated regulation involves CF-intrinsic promotion of CF-to-MyoFB transition and inhibition of cardiomyocyte-driven paracrine TGF-β-mediated MyoFB differentiation. As such, Nur77 provides distinct, cell-specific regulation of cardiac fibrosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号