首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   4篇
  国内免费   4篇
化学工业   227篇
金属工艺   4篇
机械仪表   5篇
轻工业   12篇
无线电   5篇
一般工业技术   9篇
自动化技术   1篇
  2024年   4篇
  2023年   11篇
  2022年   104篇
  2021年   99篇
  2020年   14篇
  2019年   6篇
  2018年   2篇
  2016年   5篇
  2015年   5篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2005年   1篇
  2001年   4篇
排序方式: 共有263条查询结果,搜索用时 0 毫秒
1.
2.
    
Both hypothalamic microglial inflammation and melanocortin pathway dysfunction contribute to diet-induced obesity (DIO) pathogenesis. Previous studies involving models of altered microglial signaling demonstrate altered DIO susceptibility with corresponding POMC neuron cytological changes, suggesting a link between microglia and the melanocortin system. We addressed this hypothesis using the specific microglial silencing molecule, CX3CL1 (fractalkine), to determine whether reducing hypothalamic microglial activation can restore POMC/melanocortin signaling to protect against DIO. We performed metabolic analyses in high fat diet (HFD)-fed mice with targeted viral overexpression of CX3CL1 in the hypothalamus. Electrophysiologic recording in hypothalamic slices from POMC-MAPT-GFP mice was used to determine the effects of HFD feeding and microglial silencing via minocycline or CX3CL1 on GFP-labeled POMC neurons. Finally, mice with hypothalamic overexpression of CX3CL1 received central treatment with the melanocortin receptor antagonist SHU9119 to determine whether melanocortin signaling is required for the metabolic benefits of CX3CL1. Hypothalamic overexpression of CX3CL1 increased leptin sensitivity and POMC gene expression, while reducing weight gain in animals fed an HFD. In electrophysiological recordings from hypothalamic slice preparations, HFD feeding was associated with reduced POMC neuron excitability and increased amplitude of inhibitory postsynaptic currents. Microglial silencing using minocycline or CX3CL1 treatment reversed these HFD-induced changes in POMC neuron electrophysiologic properties. Correspondingly, blockade of melanocortin receptor signaling in vivo prevented both the acute and chronic reduction in food intake and body weight mediated by CX3CL1. Our results show that suppressing microglial activation during HFD feeding reduces DIO susceptibility via a mechanism involving increased POMC neuron excitability and melanocortin signaling.  相似文献   
3.
    
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder; it is the most common cause of dementia and has no treatment. It is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of Neurofibrillary tangles (NFTs). Yet, those two hallmarks do not explain the full pathology seen with AD, suggesting the involvement of other mechanisms. Neuroinflammation could offer another explanation for the progression of the disease. This review provides an overview of recent advances on the role of the immune cells’ microglia and astrocytes in neuroinflammation. In AD, microglia and astrocytes become reactive by several mechanisms leading to the release of proinflammatory cytokines that cause further neuronal damage. We then provide updates on neuroinflammation diagnostic markers and investigational therapeutics currently in clinical trials to target neuroinflammation.  相似文献   
4.
    
The microglial fatty-acid-binding protein 4-uncoupling protein 2 (FABP4-UCP2) axis is a key regulator of neuroinflammation in high-fat-diet (HFD)-fed animals, indicating a role for FABP4 in brain immune response. We hypothesized that the FABP4-UCP2 axis is involved in regulating diet-induced cognitive decline. We tested cognitive function in mice lacking microglial FABP4 (AKO mice). Fifteen-week-old male AKO and wild-type (WT) mice were maintained on 60% HFD or normal chow (NC) for 12 weeks. Body composition was measured using EchoMRI. Locomotor activity, working memory, and spatial memory were assessed using behavioral tests (open field, T-maze, and Barnes maze, respectively). Hippocampal microgliosis was assessed via immunohistochemical staining. An inflammatory cytokine panel was assayed using hippocampal tissue. Real-time RT-PCR was performed to measure microglial UCP2 mRNA expression. Our data support that loss of FABP4 prevents cognitive decline in vivo. HFD-fed WT mice exhibited impaired long- and short-term memory, in contrast with HFD-fed AKO mice. HFD-fed WT mice had an increase in hippocampal inflammatory cytokine expression (IFNγ, IL-1β, IL-5, IL-6, KC/GRO(CXCL1), IL-10, and TNFα) and microgliosis, and decreased microglial UCP2 expression. HFD-fed AKO mice had decreased hippocampal inflammatory cytokine expression and microgliosis and increased microglial UCP2 expression compared to HFD-fed WT mice. Collectively, our work supports the idea that the FABP4-UCP2 axis represents a potential therapeutic target in preventing diet-induced cognitive decline.  相似文献   
5.
    
Despite the multidisciplinary management in the treatment of glioblastomas, the average survival of GBM patients is still 15 months. In recent years, molecular biomarkers have gained more and more importance both in the diagnosis and therapy of glial tumors. At the same time, it has become clear that non neoplastic cells, which constitute about 30% of glioma mass, dramatically influence tumor growth, spread, and recurrence. This is the main reason why, in recent years, scientific research has been focused on understanding the function and the composition of tumor microenvironment and its role in gliomagenesis and recurrence. The aim of this review is to summarize the most recent discovery about resident microglia, tumor-associated macrophages, lymphocytes, and the role of extracellular vesicles and their bijective interaction with glioma cells. Moreover, we reported the most recent updates about new therapeutic strategies targeting immune system receptors and soluble factors. Understanding how glioma cells interact with non-neoplastic cells in tumor microenvironment is an essential step to comprehend mechanisms at the base of disease progression and to find new therapeutic strategies for GBM patients. However, no significant results have yet been obtained in studies targeting single molecules/pathways; considering the complex microenvironment, it is likely that only by using multiple therapeutic agents acting on multiple molecular targets can significant results be achieved.  相似文献   
6.
    
Polyamine oxidation plays a major role in neurodegenerative diseases. Previous studies from our laboratory demonstrated that spermine oxidase (SMOX, a member of the polyamine oxidase family) inhibition using MDL 72527 reduced neurodegeneration in models of retinal excitotoxicity and diabetic retinopathy. However, the mechanisms behind the neuroprotection offered by SMOX inhibition are not completely studied. Utilizing the experimental model of retinal excitotoxicity, the present study determined the impact of SMOX blockade in retinal neuroinflammation. Our results demonstrated upregulation in the number of cells positive for Iba-1 (ionized calcium-binding adaptor molecule 1), CD (Cluster Differentiation) 68, and CD16/32 in excitotoxicity-induced retinas, while MDL 72527 treatment reduced these changes, along with increases in the number of cells positive for Arginase1 and CD206. When retinal excitotoxicity upregulated several pro-inflammatory genes, MDL 72527 treatment reduced many of them and increased anti-inflammatory genes. Furthermore, SMOX inhibition upregulated antioxidant signaling (indicated by elevated Nrf2 and HO-1 levels) and reduced protein-conjugated acrolein in excitotoxic retinas. In vitro studies using C8-B4 cells showed changes in cellular morphology and increased reactive oxygen species formation in response to acrolein (a product of SMOX activity) treatment. Overall, our findings indicate that the inhibition SMOX pathway reduced neuroinflammation and upregulated antioxidant signaling in the retina.  相似文献   
7.
    
Genetic variants in TREM2, a microglia-related gene, are well-known risk factors for Alzheimer’s disease (AD). Here, we report that TREM2 originates from circular RNAs (circRNAs), a novel class of non-coding RNAs characterized by a covalent and stable closed-loop structure. First, divergent primers were designed to amplify circRNAs by RT-PCR, which were further assessed by Sanger sequencing. Then, additional primer sets were used to confirm back-splicing junctions. In addition, HMC3 cells were used to assess the microglial expression of circTREM2s. Three candidate circTREM2s were identified in control and AD human entorhinal samples. One of the circRNAs, circTREM2_1, was consistently amplified by all divergent primer sets in control and AD entorhinal cortex samples as well as in HMC3 cells. In AD cases, a moderate negative correlation (r = −0.434) was found between the global average area of Aβ deposits in the entorhinal cortex and circTREM2_1 expression level. In addition, by bioinformatics tools, a total of 16 miRNAs were predicted to join with circTREM2s. Finally, TREM2 mRNA corresponding to four isoforms was profiled by RT-qPCR. TREM2 mRNA levels were found elevated in entorhinal samples of AD patients with low or intermediate ABC scores compared to controls. To sum up, a novel circRNA derived from the TREM2 gene, circTREM2_1, has been identified in the human entorhinal cortex and TREM2 mRNA expression has been detected to increase in AD compared to controls. Unraveling the molecular genetics of the TREM2 gene may help to better know the innate immune response in AD.  相似文献   
8.
    
There is a huge need for novel therapeutic and preventative approaches to Alzheimer’s disease (AD) and neuroinflammation seems to be one of the most fascinating solutions. The primary cell type that performs immunosurveillance and helps clear out unwanted chemicals from the brain is the microglia. Microglia work to reestablish efficiency and stop further degeneration in the early stages of AD but mainly fail in the illness’s later phases. This may be caused by a number of reasons, e.g., a protracted exposure to cytokines that induce inflammation and an inappropriate accumulation of amyloid beta (Aβ) peptide. Extracellular amyloid and/or intraneuronal phosphorylated tau in AD can both activate microglia. The activation of TLRs and scavenger receptors, inducing the activation of numerous inflammatory pathways, including the NF-kB, JAK-STAT, and NLRP3 inflammasome, facilitates microglial phagocytosis and activation in response to these mediators. Aβ/tau are taken up by microglia, and their removal from the extracellular space can also have protective effects, but if the illness worsens, an environment that is constantly inflamed and overexposed to an oxidative environment might encourage continuous microglial activation, which can lead to neuroinflammation, oxidative stress, iron overload, and neurotoxicity. The complexity and diversity of the roles that microglia play in health and disease necessitate the urgent development of new biomarkers that identify the activity of different microglia. It is imperative to comprehend the intricate mechanisms that result in microglial impairment to develop new immunomodulating therapies that primarily attempt to recover the physiological role of microglia, allowing them to carry out their core function of brain protection.  相似文献   
9.
    
As the resident immune cells of the central nervous system, microglia have a wide range of functions such as surveillance, phagocytosis, and signaling through production of chemokines and cytokines. Recent studies have identified and characterized macrophages residing at the meninges, a series of layers surrounding the brain and spinal cord. While perivascular microglia within the brain parenchyma increase following chronic hypertension, there are no reports of changes at the meninges, and specifically, associated with the pial vasculature. Thus, we used female Sprague Dawley and Dahl salt-sensitive (SS/Jr) rat brains, stained for ionized calcium-binding adapter molecule (Iba1), and characterized microglia/macrophages associated with pial vessels in the posterior brain. Results indicate that Iba1+ pial vessel-associated microglia (PVAM) completely surrounded the vessels in brains from the Dahl-SS/Jr rats. PVAM density was significantly higher and distance between PVAMs lower in Dahl-SS/Jr compared to the Sprague Dawley rat brains. Pregnancy history did not affect these findings. While the functional role of these cells are not known, we contextualize our novel findings with that of other studies assessing or characterizing myeloid cells at the borders of the CNS (meninges and choroid plexus) and perivascular macrophages and propose their possible origin in the Dahl-SS/Jr model of chronic hypertension.  相似文献   
10.
    
Escherichia coli K1 is a leading cause of neonatal bacterial meningitis. Recruitment of neutrophils to the central nervous system (CNS) via local immune response plays a critical role in defense against E. coli K1 infection; however, the mechanism underlying this recruitment remains unclear. In this study, we report that microglia and astrocytes are activated in response to stimulation by E. coli K1 and/or E. coli K1-derived outer membrane vesicles (OMVs) and work collaboratively to drive neutrophil recruitment to the CNS. Microglial activation results in the release of the pro-inflammatory cytokine TNF-α, which activates astrocytes, resulting in the production of CXCL1, a chemokine critical for recruiting neutrophils. Mice lacking either microglia or TNF-α exhibit impaired production of CXCL1, impaired neutrophil recruitment, and an increased CNS bacterial burden. C-X-C chemokine receptor 2 (CXCR2)-expressing neutrophils primarily respond to CXCL1 released by astrocytes. This study provides further insights into how immune responses drive neutrophil recruitment to the brain to combat E. coli K1 infection. In addition, we show that direct recognition of E. coli K1 by microglia is prevented by the K1 capsule. This study also reveals that OMVs are sufficient to induce microglial activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号