首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   2篇
  国内免费   1篇
电工技术   1篇
化学工业   107篇
金属工艺   1篇
机械仪表   3篇
轻工业   3篇
无线电   2篇
一般工业技术   5篇
自动化技术   7篇
  2023年   3篇
  2022年   51篇
  2021年   36篇
  2020年   4篇
  2019年   3篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   6篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2005年   1篇
  2003年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
1.
    
Omics studies are crucial to improve our understanding of myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults. Employing tissue samples and cell lines derived from patients and animal models, omics approaches have revealed the myriad alterations in gene and microRNA expression, alternative splicing, 3′ polyadenylation, CpG methylation, and proteins levels, among others, that contribute to this complex multisystem disease. In addition, omics characterization of drug candidate treatment experiments provides crucial insight into the degree of therapeutic rescue and off-target effects that can be achieved. Finally, several innovative technologies such as single-cell sequencing and artificial intelligence will have a significant impact on future DM1 research.  相似文献   
2.
    
Stargardt disease is the commonest juvenile macular dystrophy. It is caused by genetic mutations in the ABCA4 gene. Diagnosis is not always straightforward, and various phenocopies exist. Late-onset disease can be misdiagnosed with age-related macular disease. A correct diagnosis is particularly critical because of emergent gene therapies. Stargardt disease is known to affect retinal pigment epithelium and photoreceptors. Many studies have also highlighted the importance of the choroid in the diagnosis, pathophysiology, and progression of the disease. The choroid is in an integral relationship with the retinal pigment epithelium and photoreceptors, and its possible involvement during the disease should be considered. The purpose of this review is to analyze the current diagnostic tools for choroidal evaluation and the extrapolation of useful data for ophthalmologists and researchers studying the disease.  相似文献   
3.
    
Duchenne muscular dystrophy (DMD) is an X-linked recessive neuromuscular disorder with a prevalence of approximately 1 in 3500–5000 males. DMD manifests as childhood-onset muscle degeneration, followed by loss of ambulation, cardiomyopathy, and death in early adulthood due to a lack of functional dystrophin protein. Out-of-frame mutations in the dystrophin gene are the most common underlying cause of DMD. Gene editing via the clustered regularly interspaced short palindromic repeats (CRISPR) system is a promising therapeutic for DMD, as it can permanently correct DMD mutations and thus restore the reading frame, allowing for the production of functional dystrophin. The specific mechanism of gene editing can vary based on a variety of factors such as the number of cuts generated by CRISPR, the presence of an exogenous DNA template, or the current cell cycle stage. CRISPR-mediated gene editing for DMD has been tested both in vitro and in vivo, with many of these studies discussed herein. Additionally, novel modifications to the CRISPR system such as base or prime editors allow for more precise gene editing. Despite recent advances, limitations remain including delivery efficiency, off-target mutagenesis, and long-term maintenance of dystrophin. Further studies focusing on safety and accuracy of the CRISPR system are necessary prior to clinical translation.  相似文献   
4.
    
Although rare, inherited retinal degenerations (IRDs) are the most common reason for blind registration in the working age population. They are highly genetically heterogeneous (>300 known genetic loci), and confirmation of a molecular diagnosis is a prerequisite for many therapeutic clinical trials and approved treatments. First-tier genetic testing of IRDs with panel-based next-generation sequencing (pNGS) has a diagnostic yield of ≈70–80%, leaving the remaining more challenging cases to be resolved by second-tier testing methods. This study describes the phenotypic reassessment of patients with a negative result from first-tier pNGS and the rationale, outcomes, and cost of second-tier genetic testing approaches. Removing non-IRD cases from consideration and utilizing case-appropriate second-tier genetic testing techniques, we genetically resolved 56% of previously unresolved pedigrees, bringing the overall resolve rate to 92% (388/423). At present, pNGS remains the most cost-effective first-tier approach for the molecular assessment of diverse IRD populations Second-tier genetic testing should be guided by clinical (i.e., reassessment, multimodal imaging, electrophysiology), and genetic (i.e., single alleles in autosomal recessive disease) indications to achieve a genetic diagnosis in the most cost-effective manner.  相似文献   
5.
    
Mitochonic Acid 5 (MA-5) enhances mitochondrial ATP production, restores fibroblasts from mitochondrial disease patients and extends the lifespan of the disease model “Mitomouse”. Additionally, MA-5 interacts with mitofilin and modulates the mitochondrial inner membrane organizing system (MINOS) in mammalian cultured cells. Here, we used the nematode Caenorhabditis elegans to investigate whether MA-5 improves the Duchenne muscular dystrophy (DMD) model. Firstly, we confirmed the efficient penetration of MA-5 in the mitochondria of C. elegans. MA-5 also alleviated symptoms such as movement decline, muscular tone, mitochondrial fragmentation and Ca2+ accumulation of the DMD model. To assess the effect of MA-5 on mitochondria perturbation, we employed a low concentration of rotenone with or without MA-5. MA-5 significantly suppressed rotenone-induced mitochondria reactive oxygen species (ROS) increase, mitochondrial network fragmentation and nuclear destruction in body wall muscles as well as endogenous ATP levels decline. In addition, MA-5 suppressed rotenone-induced degeneration of dopaminergic cephalic (CEP) neurons seen in the Parkinson’s disease (PD) model. Furthermore, the application of MA-5 reduced mitochondrial swelling due to the immt-1 null mutation. These results indicate that MA-5 has broad mitochondrial homing and MINOS stabilizing activity in metazoans and may be a therapeutic agent for these by ameliorating mitochondrial dysfunction in DMD and PD.  相似文献   
6.
    
Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disease mediated by a toxic gain of function of mutant RNAs. The neuropsychological manifestations affect multiple domains of cognition and behavior, but their etiology remains elusive. Transgenic DMSXL mice carry the DM1 mutation, show behavioral abnormalities, and express low levels of GLT1, a critical regulator of glutamate concentration in the synaptic cleft. However, the impact of glutamate homeostasis on neurotransmission in DM1 remains unknown. We confirmed reduced glutamate uptake in the DMSXL hippocampus. Patch clamp recordings in hippocampal slices revealed increased amplitude of tonic glutamate currents in DMSXL CA1 pyramidal neurons and DG granule cells, likely mediated by higher levels of ambient glutamate. Unexpectedly, extracellular GABA levels and tonic current were also elevated in DMSXL mice. Finally, we found evidence of synaptic dysfunction in DMSXL mice, suggestive of abnormal short-term plasticity, illustrated by an altered LTP time course in DG and in CA1. Synaptic dysfunction was accompanied by RNA foci accumulation in localized areas of the hippocampus and by the mis-splicing of candidate genes with relevant functions in neurotransmission. Molecular and functional changes triggered by toxic RNA may induce synaptic abnormalities in restricted brain areas that favor neuronal dysfunction.  相似文献   
7.
    
Duchenne muscular dystrophy (DMD) is a rare genetic disease leading to progressive muscle wasting, respiratory failure, and cardiomyopathy. Although muscle fibrosis represents a DMD hallmark, the organisation of the extracellular matrix and the molecular changes in its turnover are still not fully understood. To define the architectural changes over time in muscle fibrosis, we used an mdx mouse model of DMD and analysed collagen and glycosaminoglycans/proteoglycans content in skeletal muscle sections at different time points during disease progression and in comparison with age-matched controls. Collagen significantly increased particularly in the diaphragm, quadriceps, and gastrocnemius in adult mdx, with fibrosis significantly correlating with muscle degeneration. We also analysed collagen turnover pathways underlying fibrosis development in cultured primary quadriceps-derived fibroblasts. Collagen secretion and matrix metalloproteinases (MMPs) remained unaffected in both young and adult mdx compared to wt fibroblasts, whereas collagen cross-linking and tissue inhibitors of MMP (TIMP) expression significantly increased. We conclude that, in the DMD model we used, fibrosis mostly affects diaphragm and quadriceps with a higher collagen cross-linking and inhibition of MMPs that contribute differently to progressive collagen accumulation during fibrotic remodelling. This study offers a comprehensive histological and molecular characterisation of DMD-associated muscle fibrosis; it may thus provide new targets for tailored therapeutic interventions.  相似文献   
8.
    
Duchenne muscular dystrophy (DMD) is a muscle disease characterized by the absence of the protein dystrophin, which causes a loss of sarcolemma integrity, determining recurrent muscle injuries, decrease in muscle function, and progressive degeneration. Currently, there is a need for therapeutic treatments to improve the quality of life of DMD patients. Here, we investigated the effects of a low-intensity aerobic training (37 sessions) on satellite cells, peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α protein (PGC-1α), and different types of fibers of the psoas muscle from mdx mice (DMD experimental model). Wildtype and mdx mice were randomly divided into sedentary and trained groups (n = 24). Trained animals were subjected to 37 sessions of low-intensity running on a motorized treadmill. Subsequently, the psoas muscle was excised and analyzed by immunofluorescence for dystrophin, satellite cells, myosin heavy chain (MHC), and PGC-1α content. The minimal Feret’s diameters of the fibers were measured, and light microscopy was applied to observe general morphological features of the muscles. The training (37 sessions) improved morphological features in muscles from mdx mice and caused an increase in the number of quiescent/activated satellite cells. It also increased the content of PGC-1α in the mdx group. We concluded that low-intensity aerobic exercise (37 sessions) was able to reverse deleterious changes determined by DMD.  相似文献   
9.
A patient with end-stage renal disease presented with reflex sympathetic dystrophy syndrome (RSDS) on her left hand 1 month after arteriovenous fistula (AVF) surgery. Magnetic resonance angiography revealed steal syndrome at the AVF level. Bone scintigraphy revealed early-stage RSDS. We considered that arterial insufficiency because of steal phenomenon following AVF surgery and underlying occlusive arterial disease triggered RSDS development.  相似文献   
10.
More than 20 human genetic diseases are associated with inheriting an unstable expanded DNA simple sequence tandem repeat, for example, CTG (cytosine–thymine–guanine) repeats in myotonic dystrophy type 1 (DM1) and CAG (cytosine–adenine–guanine) repeats in Huntington disease (HD). These sequences mutate by changing the number of repeats not just between generations, but also during the lifetime of affected individuals. Levels of somatic instability contribute to disease onset and progression but as changes are tissue-specific, age- and repeat length-dependent, interpretation of the level of somatic instability in an individual is confounded by these considerations. Mathematical models, fitted to CTG repeat length distributions derived from blood DNA, from a large cohort of DM1-affected or at risk individuals, have recently been used to quantify inherited repeat lengths and mutation rates. Taking into account age, the estimated mutation rates are lower than predicted among individuals with small alleles (inherited repeat lengths less than 100 CTGs), suggesting that these rates may be suppressed at the lower end of the disease-causing range. In this study, we propose that a length-specific effect operates within this range and tested this hypothesis using a model comparison approach. To calibrate the extended model, we used data derived from blood DNA from DM1 individuals and, for the first time, buccal DNA from HD individuals. In a novel application of this extended model, we identified individuals whose effective repeat length, with regards to somatic instability, is less than their actual repeat length. A plausible explanation for this distinction is that the expanded repeat tract is compromised by interruptions or other unusual features. We quantified effective length for a large cohort of DM1 individuals and showed that effective length better predicts age of onset than inherited repeat length, thus improving the genotype–phenotype correlation. Under the extended model, we removed some of the bias in mutation rates making them less length-dependent. Consequently, rates adjusted in this way will be better suited as quantitative traits to investigate cis- or trans-acting modifiers of somatic mosaicism, disease onset and progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号