首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
化学工业   2篇
机械仪表   1篇
一般工业技术   2篇
  2016年   3篇
  2014年   1篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
In this paper the reliability and performance of a vapour compression refrigeration system with ZnO nanoparticles in the working fluid was investigated experimentally. Nanorefrigerant was synthesized on the basis of the concept of the nanofluids, which was prepared by mixing ZnO nanoparticles with R152a refrigerant. The conventional refrigerant R134a has a global warming potential (GWP) of 1300 whereas R152a has a significant reduced value of GWP of 140 only. An experimental test rig is designed and fabricated indigenously in the laboratory to carry out the investigations. ZnO nanoparticles with refrigerant mixture were used in HFC R152a refrigeration system. The system performance with nanoparticles was then investigated. The concentration of nano ZnO ranges in the order of 0.1% v, 0.3% v and 0.5%v with particle size of 50 nm and 150 g of R152a was charged and tests were conducted. The compressor suction pressure, discharge pressure and evaporator temperature were measured. The results indicated that ZnO nanorefrigerant works normally and safely in the system. The ZnO nanoparticle concentration is an important factor considered for heat transfer enhancement in the refrigeration system. The performance of the system was significantly improved with 21% less energy consumption when 0.5%v ZnO-R152a refrigerant. Both the suction pressure and discharge pressure were lowered by 10.5% when nanorefrigerant was used. The evaporator temperature was reduced by 6% with the use of nanorefrigerant. Hence ZnO nanoparticles could be used in refrigeration system to considerably reduce energy consumption. The usage of R152a with zero ozone depleting potential (ODP) and very less GWP and thus provides a green and clean environment. The complete experimental results and their analysis are reported in the main paper.  相似文献   
2.
罗小平  张霖  刘波 《化工进展》2016,35(12):3763-3770
分别以质量分数为0.2%、0.5%和0.8%的Al2O3-R141b纳米制冷剂和纯制冷剂R141b为工质,在水力直径为1333μm的矩形微细通道内进行了流动沸腾实验,分析了纳米颗粒浓度对工质两相摩擦压降的影响,对比了实验前后换热壁面的表面能。研究结果表明:实验工况相同时,质量分数为0.2%、0.5%和0.8%的纳米制冷剂的两相摩擦压降均比纯制冷剂低,降低的最大幅度分别约为11.6%、14.8%和19.2%;实验后纳米颗粒在换热壁面附着,使壁面表面能增大,质量分数为0.2%、0.5%和0.8%的纳米制冷剂实验后换热壁面表面能比实验前分别增大了1.26倍、1.44倍和1.91倍,减小了换热表面的粗糙度和提高其润湿性,使得工质两相摩擦压降减小;根据实验值与模型预测值的对比情况,对Qu-Mudawar模型进行修正,拟合得到的关联式能很好预测实验值,平均绝对误差为9.78%。  相似文献   
3.
研究了CuO-R113纳米制冷剂在水平直光管内的流动沸腾换热特性。实验测试段长度1.5 m、外径9.52 mm。实验工况的质量流率为100~200 kg•m-2•s-1,热通量为3.08~6.16 kW•m-2, 入口干度为0.2~0.7,纳米颗粒质量分数为0~0.5%。结果表明:CuO-R113纳米制冷剂的传热系数高于纯R113制冷剂的传热系数。纳米颗粒的加入,强化了制冷剂管内流动沸腾换热。质量流率为100、150、200 kg•m-2•s-1的情况下,传热系数分别最大提高了29.7%、22.7%、25.6%。  相似文献   
4.
为探究热流密度、质量通量和入口过冷度对微细通道流动沸腾压降波动特性的影响,以质量分数为0.8%的纳米制冷剂Al_2O_3-R141b及纯制冷剂R141b为工质在水力直径为1.33 mm的矩形微细通道内进行了流动沸腾实验。结果表明:热流密度从18.2 k W/m2增加到25.4 k W/m~2时,工质进出口压降波动更为剧烈;较大质量通量和较高入口过冷度一定程度上可以使压降波动更平缓;与纯制冷剂相比,质量分数为0.8%的纳米制冷剂Al_2O_3-R141b的压降波动较为平缓,其压降标准差最大降低了18%。  相似文献   
5.
纳米制冷剂是指以一定的比例和方式,在制冷剂介质中添加纳米级的金属或者非金属粒子从而形成的纳米流体,在强化换热、提高制冷系统效率等方面具有诱人的应用前景。介绍了以制冷剂为基液的纳米流体的研究现状,从热物性(包括导热系数和黏度)以及传热(包括池沸腾和两相流)方面对纳米制冷剂的研究进行了综述,指出了目前工作的不足以及未来研究的重点。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号