首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13582篇
  免费   1592篇
  国内免费   466篇
电工技术   5275篇
综合类   564篇
化学工业   2163篇
金属工艺   755篇
机械仪表   398篇
建筑科学   137篇
矿业工程   326篇
能源动力   2593篇
轻工业   172篇
水利工程   13篇
石油天然气   47篇
武器工业   68篇
无线电   756篇
一般工业技术   1327篇
冶金工业   485篇
原子能技术   90篇
自动化技术   471篇
  2024年   80篇
  2023年   254篇
  2022年   551篇
  2021年   578篇
  2020年   723篇
  2019年   563篇
  2018年   458篇
  2017年   699篇
  2016年   698篇
  2015年   546篇
  2014年   903篇
  2013年   697篇
  2012年   865篇
  2011年   1164篇
  2010年   803篇
  2009年   778篇
  2008年   707篇
  2007年   865篇
  2006年   705篇
  2005年   581篇
  2004年   475篇
  2003年   457篇
  2002年   357篇
  2001年   311篇
  2000年   239篇
  1999年   149篇
  1998年   115篇
  1997年   68篇
  1996年   77篇
  1995年   50篇
  1994年   33篇
  1993年   18篇
  1992年   13篇
  1991年   9篇
  1990年   6篇
  1989年   9篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1982年   3篇
  1980年   2篇
  1974年   1篇
  1972年   1篇
  1964年   1篇
  1960年   1篇
  1959年   2篇
  1957年   1篇
  1956年   1篇
  1954年   1篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(16):23341-23347
In recent years, the rapid development of Li(NixCoyMn1-x-y)O2 (LNCM) materials for application in ternary lithium-ion batteries has led to an increased demand for refractory kiln saggars in industries. However, saggars used for firing ternary Li-ion battery cathode materials are often subjected to severe corrosion and spalling. To investigate the damage mechanism of the saggar materials, non-contact corrosion experiments were designed to study the effects of the precursor additions, calcination temperature, and number of calcinations during the interaction between mullite saggar and LNCM materials. The phase composition and microstructure of the mullite saggar specimens before and after corrosion were characterized using X-ray diffraction and scanning electron microscopy, respectively, to obtain a comprehensive understanding of the causes of the deterioration of mullite saggar materials during corrosion.  相似文献   
2.
A new route of materials synthesis, namely, high-temperature, high-pressure reactive planetary ball milling (HTPRM), is presented. HTPRM allows for the mechanosynthesis of materials at fully controlled temperatures of up to 450 °C and pressures of up to 100 bar of hydrogen. As an example of this application, a successful synthesis of magnesium hydride is presented. The synthesis was performed at controlled temperatures (room temperature (RT), 100, 150, 200, 250, 300, and 325 °C) while milling in a planetary ball mill under hydrogen pressure (>50 bar). Very mild milling conditions (250 rpm) were applied for a total milling time of 2 h, and a milling vial with a relatively small diameter (φ = 53 mm, V = ~0.06 dm3) was used. The effect of different temperatures on the synthesis kinetics and outcome were examined. The particle morphology, phase composition, reaction yield, and particle size were measured and analysed by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry (DSC) techniques. The obtained results showed that increasing the temperature of the process significantly improved the reaction rate, which suggested the great potential of this technique for the mechanochemical synthesis of materials.  相似文献   
3.
Developing non-precious metal-based catalysts as the substitution of precious catalysts (Pt/C) in oxygen reduction reaction (ORR) is crucial for energy devices. Herein, a template and organic solvent-free method was adopted to synthesize Fe, B, and N doped nanoflake-like carbon materials (Fe/B/N–C) by pyrolysis of monoclinic ZIF-8 coated with iron precursors and boric acid. Benefiting from introducing B into Fe–N–C, the regulated electron cloud density of Fe-Nx sites enhance the charge transfer and promotes the ORR process. The as-synthesized Fe/B/N–C electrocatalyst shows excellent ORR activity of a half-wave potential (0.90 V vs 0.87 V of Pt/C), together with superior long-term stability (95.5% current density retention after 27 h) in alkaline media and is even comparable to the commercial Pt/C catalyst (with a half-wave potential of 0.74 V vs 0.82 V of Pt/C) in an acidic electrolyte. A Zn-air battery assembled with Fe/B/N–C as ORR catalyst delivers a higher open-circuit potential (1.47 V), specific capacity (759.9 mA h g?1Zn at 10 mA cm?2), peak power density (62 mW cm?2), as well as excellent durability (5 mA cm?2 for more than 160 h) compared to those with commercial Pt/C. This work provides an effective strategy to construct B doped Fe–N–C materials as nonprecious ORR catalyst. Theoretical calculations indicate that introduction of B could induce Fe-Nx species electronic configuration and is favorable for activation of OH1 intermediates to promote ORR process.  相似文献   
4.
This article proposes an active balancer, which features bidirectional charge shuttling and adaptive equalization current control, to fast counterbalance the state of charge (SOC) of cells in a lithium-ion battery (LIB) string. The power circuit consists of certain bidirectional buck-boost converters to transfer energy among the different cells back and forth. Owing to the characterization of the open-circuit voltage (OCV) vs SOC in LIB being relatively smooth near the SOC middle range, the SOC-inspected balance strategy can achieve more precise and efficient equilibrium than the voltage-based control. Accordingly, a compensated OCV-based SOC estimation is put forward to take into account the discrepancy of SOC estimation. Besides, the varied-duty-cycle (VDC) and curve-fitting modulation (CFM) methods are devised herein to tackle the problems of slow equalization rate and low balance efficacy, which arise from the diminution in balancing current as the SOC difference between the cells decreases in the later duration of equalization especially. The proposed strategies have taken the battery nonlinear characteristic and circuit parameter nonideality into account and can adaptively modulate the duty cycle with the SOC difference to keep balancing current constant throughout the balancing cycle. Simulated and experimental results are given to demonstrate the feasibility and effectiveness of the same prototype constructed. Compared with the fixed duty cycle and the VDC methods, the proposed CFM has the best balancing efficiency of 81.4%, and the balance time is shortened by 27.1% and 18.6%, respectively.  相似文献   
5.
The evaluation of cell's weatherability is of practical interest. To further improve the soluble lead flow battery's weatherability, physiochemical properties of electrolytes containing fluoborate, perchlorate, methanesulfonate and trifluoromethanesulfonate are investigated from ?60 to 50 °C. Activities of CF3SO3H and HClO4 are poor in trifluoromethanesulfonate and perchlorate solutions due to common anion effect. The solubility of lead salt can be improved by increasing temperature, but worsened by increasing acid's content. With the temperature increasing, the conductivity is enhanced, and the viscosity is lowered for four solutions. The same results have been found by increasing acid's content except for CF3SO3H. The high energy efficiency can be achieved for cells over ?40–0 °C using fluoborate and perchlorate solutions, 73.2% at ?40 °C and 78.1% at ?30 °C respectively. Over the temperature range of 20–50 °C, the cells with methanesulfonate and trifluoromethanesulfonate solutions have good performance, 77.4% and 73.7% at 50 °C respectively.  相似文献   
6.
《Advanced Powder Technology》2020,31(10):4187-4196
Manganese oxide catalysts have been synthesized from the used batteries via hydrometallurgical method and effect of hydrometallurgical parameters such as the effect of acid type (H2SO4, HNO3, HCl), acid concentration (0.5, 1, 1.5, 2 %v/v) and powder to acid ratio (1/50, 1/60, 1/70, 1/80) were in detail investigated. The physico-chemical properties of as-prepared catalysts were characterized by FT-IR, XRD, FESEM, EDX, BET, TEM, and TPR-H2 analysis. The activity of as-prepared catalysts were investigated towards the oxidation of benzene, toluene, and xylene (BTX) in a plasma-catalytic process. The results show that benzene and toluene conversion were almost constant in the range of 97–98% in case of various acid types, acid concentrations and solid to liquid ratios. However, the xylene conversion were varied in case of different hydrometallurgical factors. The highest xylene conversion was obtained in the presence of MnS0.5–60, which was prepared using H2SO4 with concentration of 0.5%v/v and solid to liquid ratio of 1/60. The effect of the input voltage and BTX flow rate on the BTX conversion was also investigated using MnS0.5–60 catalyst in detail.  相似文献   
7.
The mechanical integrity of battery separators is critical for battery safety and durability. A comprehensive study of strain‐rate‐dependent tensile and puncture properties of a polypropylene lithium‐ion battery separator is presented here with a new model. Due to anisotropy of the polymeric membrane, tensile testing was conducted for different directions. Results showed that tensile strength and elastic modulus were increased 1000% and 500%, respectively, for different directions. It was also demonstrated that tensile strength changed 10 to 25% with strain rate (1.67 × 10?4 to 1.67 × 10?1 s?1) for different directions. An equation was obtained for the first time for flow stress versus strain rate at varied tensile directions with respect to machine direction. Moreover, puncture testing was performed and it was shown that puncture strength was increased 140% with increasing strain rate from 0.25 to 250 mm min?1. Two failure modes were also observed in puncture samples. Finally, Eyring's model was used to calculate activation enthalpy of the porous polypropylene separator. © 2020 Society of Chemical Industry  相似文献   
8.
Spinel LiSr0·1Cr0·1Mn1·8O4 was synthesised by high temperature solid state method in order to enhance the electrochemical performance. The LiSr0·1Cr0·1Mn1·8O4 (LSCMO) materials were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical tests. The XRD and SEM studies confirm that LSCMO had spinel crystal structure with a space group of Fd3m, and the particle of LSCMO shows irregular shape. The cyclic voltammetry data illustrated that the heavy current charge–discharge performance of LMO was improved by Sr2+ and Cr3+ doping. The galvanostatic charge–discharge of LSCMO cathode materials was measured at 1, 5, 10 and 20 C. The results indicated that LSCMO improved the capacity retention.  相似文献   
9.
This study investigates the preparation of polyetherimide (PEI) – LaNi5 composites films for hydrogen storage. Prior to the polymer addition, LaNi5 was ball-milled at different conditions (250, 350, and 450 RPM) and annealed at 500 °C for 1 h under vacuum. The composites were produced with BM-LaNi5-350 (PEI/LaNi5-350) and annealed BM-LaNi5-350 (PEI/LaNi5-350-TT). Membranes were successfully produced through solvent casting assisted by an ultrasonic bath. The particles dispersion and the film morphology did not change after hydrogenation cycles. In the H2 sorption experiments at 43 °C and 20 bar, the films stored H2 without incubation time; both samples reached a capacity of ~0.6 wt%. The H2 sorption kinetics of PEI/LaNi5-350 was comparable to that of BM-LaNi5-350, whereas PEI/LaNi5-350-TT presented significantly slower kinetics. LaNi5 oxidation was hindered by PEI, showing that it can be explored to improve metal hydrides air resistance. The results demonstrated that PEI films filled with LaNi5 are promising materials for hydrogen storage.  相似文献   
10.
Additive doping is one of the effective methods to overcome the shortcomings of MgH2 on the aspect of relatively high operating temperatures and slow desorption kinetics. In this paper, hollow g-C3N4 (TCN) tubes with a diameter of 2 μm are synthesized through the hydrothermal and high-temperature pyrolysis methods, and then nickel is chemically reduced onto TCN to form Ni/TCN composite at 278 K. Ni/TCN is then introduced into the MgH2/Mg system by means of hydriding combustion and ball milling. The MgH2–Ni/TCN composite starts to release hydrogen at 535 K, which is 116 K lower than the as-milled MgH2 (651 K). The MgH2–Ni/TCN composite absorbs 5.24 wt% H2 within 3500 s at 423 K, and takes up 3.56 wt% H2 within 3500 s, even at a temperature as low as 373 K. The apparent activation energy (Ea) of the MgH2 decreases from 161.1 to 82.6 kJ/mol by the addition of Ni/TCN. Moreover, the MgH2–Ni/TCN sample shows excellent cycle stability, with a dehydrogenation capacity retention rate of 98.0% after 10 cycles. The carbon material enhances sorption kinetics by dispersing and stabilizating MgH2. Otherwise, the phase transformation between Mg2NiH4 and Mg2NiH0.3 accelerates the re/dehydrogenation reaction of the composite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号