首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   6篇
综合类   1篇
化学工业   85篇
金属工艺   2篇
无线电   2篇
一般工业技术   4篇
  2023年   2篇
  2020年   6篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2014年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2004年   5篇
  2003年   5篇
  2002年   8篇
  2001年   6篇
  2000年   7篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1992年   3篇
  1991年   9篇
  1990年   13篇
  1989年   6篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
1.
Rare-earth doped strontium barium niobates were synthesized using usual ceramic technique. The dopants are La, Ce, Gd, Sm and Nd. The materials were characterized by XRD and density measurements. The grain sizes were determined from SEM analysis. Lattice parameters changed uniformly with rare-earth dopants in unfilled structures. Density measurements and SEM analysis confirmed only minute changes in the densities of the ceramics.  相似文献   
2.
Samples of 1/6Ba5Nb4O15·5/6BaNb2O6 along with the pure end members, Ba5Nb4O15 and BaNb2O6, were sintered under low oxygen partial pressure. The degradation mechanisms of dielectric loss in this reducing atmosphere have been studied. We found that the degradation occurred primarily due to the formation of oxygen vacancies caused by the reduction of Nb5+. This was determined by measuring the electrical conductivity, and through X-ray photoelectron spectroscopy. More importantly, the dielectric loss of 1/6Ba5Nb4O15·5/6BaNb2O6 samples with higher temperature stability was further decreased on sintering in a reducing atmosphere. This observation has been explained by considering the increased porosity and formation of a reduced second phase, Ba0.65NbO3.  相似文献   
3.
Regions consisting of grains of pronounced cubic develpment exist in pure KNbO3 ceramics which exhibit a temperature dependence of dielectric constant very similar to that of KNbO3 crystals. KNbO3 ceramics doped with GeO2-K2O additives have small grains, semiconducting resistance, and a different curve of dielectric constant versus temperature. As the average grain size decreases, the shape of the curve differs increasingly from that of KNbO3 crystals.  相似文献   
4.
5.
The behavior of submicron- and nano-sized NaNbO3 powder compacts during conventional sintering was studied using optical dilatometry and microstructure analysis. Microstructure-development trajectories revealed the dominance of grain growth during the initial sintering stage, while densification occurred only during later stages. Surface diffusion with low activation energy in the range of 50–60 kJ/mol was found to be the dominant material-transport mechanism during the initial sintering stage. The early activation of surface diffusion reduced the sintering driving force, decreased the rate of the densifying mechanisms and was thus identified as the main cause for poor densification of NaNbO3. Same explanation could be valid also for other alkaline niobate based lead-free piezoelectric ceramics. Finally, alternative sintering methods are discussed and the efficiency of the pressure-assisted sintering was demonstrated in successful production of highly-dense fine-grained NaNbO3 ceramics, with relative density and grain size of 98% and 700 nm, respectively.  相似文献   
6.
《Ceramics International》2020,46(5):6174-6181
The ZrO2 alloying effect is widely used to optimize the thermo-mechanical properties of potential thermal barrier coatings. In this study, dense x mol% ZrO2-Gd3NbO7 with C2221 space group were manufactured via a solid-state reaction. The crystalline structure was determined through X-ray diffraction and Raman spectroscopy, when the surface morphology was observed by scanning electron microscopy. ZrO2-Gd3NbO7 had identical orthorhombic crystal structures, and there was no second phase. The crystalline structure of ZrO2-Gd3NbO7 shrunk with the increasing ZrO2 content as indicated by XRD and Raman results. The heat capacity and thermal diffusivity of ZrO2-Gd3NbO7 were 0.31–0.43 J g−1 K−1 (25–900 °C) and 0.25–0.70 mm2/s (25–900 °C), respectively. It was found that ZrO2-Gd3NbO7 had much lower thermal conductivity (1.21–1.82 W m−1 K−1, 25–900 °C) than YSZ (2.50–3.00 W m−1 K−1) and La2Zr2O7 (1.50–2.00 W m−1 K−1). The thermal expansion coefficients (TECs) were higher than 10.60 × 10−6 K−1 (1200 °C), which were better than that of YSZ (10.00 × 10−6 K−1) and La2Zr2O7 (9.00 × 10−6 K−1). The mechanical properties of Gd3NbO7 change little with the increasing ZrO2 content, Vickers hardness was about 10 GPa, and Young's modulus was about 190 GPa, which was lower than YSZ (240 GPa). Compared with previous work about alloying effects, much lower thermal conductivity was obtained. Due to the high melting point, high hardness, low Young's modulus, ultralow thermal conductivity and high TECs, it is believed that ZrO2-Gd3NbO7 is promising TBCs candidate.  相似文献   
7.
Rare earth niobate (RE3NbO7, RE = Dy, Y, Er, Yb) ceramics have shown extremely low thermal conductivity but remain questionable in high temperature thermal barrier coating (TBC) applications with high thermal, mechanical, and chemical loads. Herein, we comprehensively characterize the properties of rare earth niobates, including mechanical properties, oxygen barrier properties, chemical stability, etc. It is found that the oxygen conductivities of the rare earth niobates are three orders of magnitude lower than 7wt.% yttria-stabilized zirconia (YSZ), indicating a remarkable oxygen barrier property to avoid oxidation of underlying metallic components. The corrosion resistance of rare earth niobate against calcium-magnesium-aluminum silicate (CMAS) is also significantly better than that of YSZ. Together with the extremely low thermal conductivity, the rare earth niobates exhibit a combination of excellent high temperature properties, which may become a promising candidate material of high temperature TBC of next generation gas turbines.  相似文献   
8.
Pb(Mg1/3Nb2/3)O3-35 mol% PbTiO3 (PMN-35PT) specimens with a 5 mol% excess PbO were prepared by excessive heat treatment at 1150°C to induce abnormal grain growth. Through electron backscatter diffraction analysis and the observation of a three-dimensional morphology, the abnormally grown PMN-35PT grains were found to be twinned crystals with penetration characteristics. The morphology of the PMN-35PT twinned crystal was crystallographically analyzed. The abnormal grain growth of PMN-35PT is suggested to be due to preferential growth at the reentrant angles formed by twins.  相似文献   
9.
Pb(Zn1/3Nb2/3)O3-based ceramics have been prepared by two different processing methods: conventional (PZN-C) and reaction-sintering (PZN-RS). The conventionally prepared PZN-based ceramics densified at lower temperatures (950°C) than the reaction-sintered samples (1100°C), but the perovskite/pyrochlore ratio was always higher in PZN-RS. The presence of a substantial amount of pyrochlore phase in PZN-C ceramics caused a decrease in the electrical properties. The maximum dielectric constant values in PZN-C ceramics were 10%–15% lower than those of PZN-RS, despite a similar average grain size, 7 ± 0.2 μm. The temperature of the maximum of the dielectric constant ( T max) was lower than that expected from the mixing rule because of the possible formation of Ba–Nb clusters. The higher chemical homogeneity in PZN-RS ceramics is the main reason for the higher dielectric constant, T max and electromechanical response, as well as for the lower difference between T max and the depolarization temperature ( T d) and the lower diffusiveness parameter (δ).  相似文献   
10.
The physical, dielectric, and optical properties of hot isostatically pressed lead magnesium niobate polycrystalline ceramics modified with 1/2 mol% La2O3, Pb1–3/2 x La x x /2-(Mg1/3Nb2/3)O3, have been investigated. Methods used to characterize the ceramics included determination of the dielectric permittivity, optical transmittance, and refractive index dispersion. The materials exhibited relaxor ferroelectric type behavior with a peak dielectric constant K > 14000 and average T c ∼−35°C. Various sintering, hot isostatic pressing, and annealing conditions were examined to produce highly dense and optically transparent materials. Through the use of hot isostatic pressing, densities more than 99.5% theoretical and transmittance greater than 50% at 633-nm wavelength were obtained. Hot isostatic pressing technique appears to be a good alternative to hot uniaxial pressing without the associated problem of PbO volatility, reactivity with the pressure vessel, and geometrical constraints.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号