首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   1篇
化学工业   28篇
  2022年   10篇
  2021年   8篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2013年   3篇
  2012年   3篇
  2010年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
1.
Self-maintaining hematopoietic stem cells are a cell population that is primarily ‘at risk’ to malignant transformation, and the cell-of-origin for some leukemias. Tissue-specific stem cells replenish the different types of functional cells within a particular tissue to meet the demands of an organism. For hematopoietic stem cells, this flexibility is important to satisfy the changing requirements for a certain type of immune cell, when needed. From studies of the natural history of childhood acute lymphoblastic leukemia, an initial oncogenic and prenatal insult gives rise to a preleukemic clone. At least a second genomic insult is needed that gives rise to a leukemia stem cell: this cell generates a hierarchy of leukemia cells. For some leukemias, there is evidence to support the concept that one of the genomic insults leads to dysregulation of the tissue homeostatic role of hematopoietic stem cells so that the hierarchy of differentiating leukemia cells belongs to just one cell lineage. Restricting the expression of particular oncogenes in transgenic mice to hematopoietic stem and progenitor cells led to different human-like lineage-restricted leukemias. Lineage restriction is seen for human leukemias by virtue of their sub-grouping with regard to a phenotypic relationship to just one cell lineage.  相似文献   
2.
Immunotherapy has improved patient survival in many types of cancer, but for prostate cancer, initial results with immunotherapy have been disappointing. Prostate cancer is considered an immunologically excluded or cold tumor, unable to generate an effective T-cell response against cancer cells. However, a small but significant percentage of patients do respond to immunotherapy, suggesting that some specific molecular subtypes of this tumor may have a better response to checkpoint inhibitors. Recent findings suggest that, in addition to their function as cancer genes, somatic mutations of PTEN, TP53, RB1, CDK12, and DNA repair, or specific activation of regulatory pathways, such as ETS or MYC, may also facilitate immune evasion of the host response against cancer. This review presents an update of recent discoveries about the role that the common somatic mutations can play in changing the tumor microenvironment and immune response against prostate cancer. We describe how detailed molecular genetic analyses of the tumor microenvironment of prostate cancer using mouse models and human tumors are providing new insights into the cell types and pathways mediating immune responses. These analyses are helping researchers to design drug combinations that are more likely to target the molecular and immunological pathways that underlie treatment failure.  相似文献   
3.
An important assumption of our current understanding of the mechanisms of carcinogenesis has been the belief that clarification of the cancer process would inevitably reveal some of the crucial mechanisms of normal human gene regulation. Since the momentous work of Bishop and Varmus, both the molecular and the biochemical processes underlying the events in the development of cancer have become increasingly clear. The identification of cellular signaling pathways and the role of protein kinases in the events leading to gene activation have been critical to our understanding not only of normal cellular gene control mechanisms, but also have clarified some of the important molecular and biochemical events occurring within a cancer cell. We now know that oncogenes are dysfunctional proto-oncogenes and that dysfunctional tumor suppressor genes contribute to the cancer process. Furthermore, Weinstein and others have hypothesized the phenomenon of oncogene addiction as a distinct characteristic of the malignant cell. It can be assumed that cancer cells, indeed, become dependent on such vital oncogenes. The products of these vital oncogenes, such as c-myc, may well be the Achilles heel by which targeted molecular therapy may lead to truly personalized cancer therapy. The remaining problem is the need to introduce relevant molecular diagnostic tests such as genome microarray analysis and proteomic methods, especially protein kinase identification arrays, for each individual patient. Genome wide association studies on cancers with gene analysis of single nucleotide and other mutations in functional proto-oncogenes will, hopefully, identify dysfunctional proto-oncogenes and allow the development of more specific targeted drugs directed against the protein products of these vital oncogenes. In 1984 Willis proposed a molecular and biochemical model for eukaryotic gene regulation suggesting how proto-oncogenes might function within the normal cell. That model predicted the existence of vital oncogenes and can now be used to hypothesize the biochemical and molecular mechanisms that drive the processes leading to disruption of the gene regulatory machinery, resulting in the transformation of normal cells into cancer.  相似文献   
4.
The profiles of DNA adducts determined for benzo[a]pyrene (BP), 7,12-dimethylbenz[a]anthracene (DMBA) and dibenzo[a,l]pyrene (DB[a,l]P) reveal that a majority of adducts are released from DNA by depurination. Papillomas were induced in mouse skin by several PAH, and mutations in the c-Harvey-ras oncogene were determined to investigate the relationship between DNA adducts and ras oncogene mutations. The pattern of mutations induced by each PAH correlated with the profile of depurinating adducts. DB[a,l]P and DMBA formed predominantly depurinating adenine adducts (78% and 79%, respectively) and consistently induced a CAA → CTA transversion in codon 61 of ras. In contrast, BP produced both guanine (46%) and adenine (25%) depurinating adducts and induced a GGC → GTC mutation in codon 13 of c-H-ras in 54% of tumors and a CAA → CTA mutation in codon 61 in 15% of tumors. These results support the hypothesis that mis-replication of unrepaired apurinic sites generated by loss of PAH-DNA adducts is responsible for transforming mutations leading to papillomas in mouse skin.  相似文献   
5.
Squamous cell carcinomas of the lung, head and neck, esophagus, and cervix account for more than two million cases of cancer per year worldwide with very few targetable therapies available and minimal clinical improvement in the past three decades. Although these carcinomas are differentiated anatomically, their genetic landscape shares numerous common genetic alterations. Amplification of the third chromosome’s distal portion (3q) is a distinguishing genetic alteration in most of these carcinomas and leads to copy-number gain and amplification of numerous oncogenic proteins. This area of the chromosome harbors known oncogenes involved in squamous cell fate decisions and differentiation, including TP63, SOX2, ECT2, and PIK3CA. Furthermore, novel targetable oncogenic kinases within this amplicon include PRKCI, PAK2, MAP3K13, and TNIK. TCGA analysis of these genes identified amplification in more than 20% of clinical squamous cell carcinoma samples, correlating with a significant decrease in overall patient survival. Alteration of these genes frequently co-occurs and is dependent on 3q-chromosome amplification. The dependency of cancer cells on these amplified kinases provides a route toward personalized medicine in squamous cell carcinoma patients through development of small-molecules targeting these kinases.  相似文献   
6.
7.
Imatinib is a clinically important ATP analogue inhibitor that targets the tyrosine kinase domain of the intracellular Abl kinase and the PDGF receptor family. Imatinib has revolutionised the treatment of chronic myeloid leukaemia, which is caused by the oncogene Bcr–Abl and certain solid tumours that harbor oncogenic mutations of the PDGF receptor family. As a leading kinase inhibitor, imatinib also provides an excellent model system to investigate how changes in drug design impact biological activity, which is an important consideration for rational drug design. Herein we report a new series of imatinib derivatives that in general have greater activity against the family of PDGF receptors and poorer activity against Abl, as a result of modifications of the phenyl and N‐methylpiperazine rings. These new compounds provide a platform for further drug development against the therapeutically important PDGF receptor family and they also provide insight into the engineering of drugs with altered biological activity.  相似文献   
8.
9.
There is a need for agents that eliminate cancer stem cells, which sustain cancer and are also largely responsible for disease relapse and metastasis. Conventional chemotherapeutics and radiotherapy are often highly effective against the bulk of cancer cells, which are proliferating, but spare cancer stem cells. Therapeutics that target cancer stem cells may also provide a bona fide cure for cancer. There are two rationales for targeting the retinoic acid receptor (RAR)γ. First, RARγ is expressed selectively within primitive cells. Second, RARγ is a putative oncogene for a number of human cancers, including cases of acute myeloid leukemia, cholangiocarcinoma, and colorectal, renal and hepatocellular carcinomas. Prostate cancer cells depend on active RARγ for their survival. Antagonizing all RARs caused necroptosis of prostate and breast cancer stem cell-like cells, and the cancer stem cells that gave rise to neurospheres from pediatric patients’ primitive neuroectodermal tumors and an astrocytoma. As tested for prostate cancer, antagonizing RARγ was sufficient to drive necroptosis. Achieving cancer-selectively is a longstanding paradigm for developing new treatments. The normal prostate epithelium was less sensitive to the RARγ antagonist and pan-RAR antagonist than prostate cancer cells, and fibroblasts and blood mononuclear cells were insensitive. The RARγ antagonist and pan-RAR antagonist are promising new cancer therapeutics.  相似文献   
10.
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human gammaherpesvirus 8 (HHV-8), contains oncogenes and proteins that modulate various cellular functions, including proliferation, differentiation, survival, and apoptosis, and is integral to KSHV infection and oncogenicity. In this review, we describe the most important KSHV genes [ORF 73 (LANA), ORF 72 (vCyclin), ORF 71 or ORFK13 (vFLIP), ORF 74 (vGPCR), ORF 16 (vBcl-2), ORF K2 (vIL-6), ORF K9 (vIRF 1)/ORF K10.5, ORF K10.6 (vIRF 3), ORF K1 (K1), ORF K15 (K15), and ORF 36 (vPK)] that have the potential to induce malignant phenotypic characteristics of Kaposi’s sarcoma. These oncogenes can be explored in prospective studies as future therapeutic targets of Kaposi’s sarcoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号