首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15726篇
  免费   2101篇
  国内免费   490篇
电工技术   196篇
综合类   937篇
化学工业   4638篇
金属工艺   571篇
机械仪表   140篇
建筑科学   593篇
矿业工程   4944篇
能源动力   195篇
轻工业   579篇
水利工程   42篇
石油天然气   144篇
武器工业   3篇
无线电   126篇
一般工业技术   772篇
冶金工业   4260篇
原子能技术   99篇
自动化技术   78篇
  2024年   50篇
  2023年   204篇
  2022年   426篇
  2021年   558篇
  2020年   546篇
  2019年   467篇
  2018年   440篇
  2017年   637篇
  2016年   788篇
  2015年   678篇
  2014年   944篇
  2013年   945篇
  2012年   1150篇
  2011年   1244篇
  2010年   901篇
  2009年   805篇
  2008年   622篇
  2007年   846篇
  2006年   686篇
  2005年   643篇
  2004年   606篇
  2003年   577篇
  2002年   487篇
  2001年   444篇
  2000年   461篇
  1999年   406篇
  1998年   280篇
  1997年   250篇
  1996年   215篇
  1995年   238篇
  1994年   153篇
  1993年   127篇
  1992年   124篇
  1991年   79篇
  1990年   73篇
  1989年   57篇
  1988年   44篇
  1987年   38篇
  1986年   26篇
  1985年   11篇
  1984年   10篇
  1983年   8篇
  1982年   10篇
  1981年   7篇
  1980年   4篇
  1977年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2021,47(23):33223-33231
The effects of pH of the reaction solution and the concentration of phosphoric acid on the crystal growth behavior of LaPO4 crystallites were investigated and the mechanical properties of rare-earth phosphates were compared. As a result, the concentration of phosphoric acid of 10% was beneficial to the crystal growth of LaPO4 nanocrystalline. When the pH value of the reaction solution was 2, the size of LaPO4 crystallites increased gradually with the increasing reaction temperature, and the smallest crystallite size of 43.27 nm was obtained after heat-treatment at 1000 °C. Simultaneously, the activation energy for crystal growth of LaPO4 nanocrystalline was relatively lower (26.82 kJ mol−1). With the decreasing radii of rare-earth ions, the hardness, Young's modulus and fracture toughness of the bulk rare-earth phosphates exhibited a reduced tendency, resulted from the increase of porosity under the same preparation process.  相似文献   
2.
The conversion of food industry by-products to compounds with high added value is nowadays a significant topic, for social, environmental, and economic reasons. In this paper, calcium phosphate-based materials were obtained from black scabbardfish (Aphanopus carbo) bones and grey triggerfish (Balistes capriscus) skin, which are two of the most abundant fish by-products of Madeira Island. Different calcination temperatures between 400 and 1000°C were employed. Materials obtained from calcination of bones of black scabbard fish were composed by homogeneous mixtures of hydroxyapatite (Ca10(PO4)6(OH)2, HAp) and β-tricalcium phosphate (β-Ca3(PO4)2, β-TCP). Because of the high biocompatibility of HAp and the good resorbability of β-TCP, these natural biphasic materials could be very relevant in the field of biomaterials, as bone grafts. The ratio between HAp and β-TCP in the biphasic compound was dependent on the calcination temperature. Differently, the material obtained from skin of grey triggerfish contained HAp as the main phase, together with small amounts of other mineral phases, such as halite and rhenanite, which are known to enhance osteogenesis when used as bone substitutes. In both cases, the increase of calcination temperature led to an increase in the particles size with a consequent decrease in their specific surface area. These results demonstrate that from the fish by-products of the most consumed fishes in Madeira Island it is possible to obtain bioceramic materials with tunable composition and particle morphology, which could be promising materials for the biomedical field.  相似文献   
3.
《Ceramics International》2022,48(15):21502-21514
Based on the good osteogenic and angiogenic effects of silicon and magnesium elements, three types of micro-nano magnesium-containing silicates (MS), including akermanite (Ake, Ca2MgSi2O7), diopside (Dio, CaMgSi2O6) and forsterite (For, Mg2SiO4), were incorporated into calcium phosphate cement (CPC) to improve its osteogenic and angiogenic performances for clinical application. In this present work, the physicochemical properties, osteogenesis and angiogenesis of MS/CPCs (Ake/CPCs, Dio/CPCs and For/CPCs) were investigated systematically and comparatively. The results showed that all MS/CPCs had good biomineralization and significantly stimulated the osteogenic differentiation of mBMSCs and angiogenic differentiation of HUVECs, respectively. Besides, the stimulating effects were related to not only the category of MS, but also the content of MS. The For/CPCs had a good angiogenic property but their initial setting times were beyond 60 min. The Dio/CPCs showed the lowest biological performance among the three groups of MS/CPCs due to the lower ion release (Si and Mg). The Ake was the ideal modifier that could provide CPC with appropriate physicochemical properties, better osteogenesis and angiogenesis. Simultaneously, a higher addition (10 wt%) of akermanite resulted in the best potential to bone regeneration. Taken together, this research provides an effective approach to improve the overall performance of CPC, and 10Ake/CPC is of great promising prospect in bone repair.  相似文献   
4.
本文分析了乌兰矿投产前期采矿现状及存在的主要问题,针对该矿所处蒙古国经济落后、投资风险大的现实状况,为避免生产中断、规避投资风险,早日回收前期投资考虑,采取了双斜坡道开拓、全尾胶结充填、高端壁空场嗣后充填采矿、多中段组合式连续开采等系列技术应对方案。大大降低了一次性投资规模及投资风险,前期投资得以快速回笼的同时,矿山产能也充分释放,确保了矿山的持续稳定,取得了较好的经济和社会效益。为海外地下近地表矿体开采矿山规避投资风险提供了很好的技术方案借鉴。  相似文献   
5.
6.
Anti-washout and tissue adhesion properties are essential for the clinical application of injectable bone materials. In this study, we prepared calcium phosphate cement (CPC) with anti-washout and tissue adhesion properties and attempted to build covalent bonds between CPC and the amino groups in bone tissue under a self-regulating pH system in the CPC (acidic to basic). The results of push-out tests demonstrated that a significant enhancement (from 6.42 ± 0.76 N to 61.5 ± 4.09 N) in tissue adhesion was obtained with the addition of 6% (w/w) oxidized sodium alginate (OSA) in CPC. The FTIR, XRD, anti-washout test, XPS, pH test, and SEM results suggested that the synergistic effect of OSA-citric acid (CA) led to the formation of a three-dimensional gel network structure in the CPC, and the Schiff base reaction between aldehyde and amino groups induced adhesion between CPC and the bone tissue. Further, the addition of less OSA had no significant negative effect on the hydration properties of CPC. Our work aims to promote the development of injectable bone material in clinical applications.  相似文献   
7.
《Ceramics International》2022,48(24):36401-36409
Catalytic supercritical water oxidation (SCWO) of an organophosphate flame retardant, namely tri-n-butyl phosphate (TNBP) was studied. Firstly, copper oxide nanoparticles (NPs) were synthesized in SCW and their properties were characterized by various analyses. Afterwards, their catalytic performance was investigated under different conditions including reaction temperature (400–500 °C), TNBP volume percentage in the feed (1–4%), oxidant ratio (0–2) and reaction time (50–150 min) based on response surface methodology (RSM). The synthesized CuO NPs had an average particle size of 30 nm with a narrow distribution. According to RSM analysis, the reaction temperature and time are the most significant factors; whereas, the impact of the other factors, especially TNBP volume percentage in the feed, was found to be negligible. Overall, excellent performance was achieved under optimal conditions found by the RSM, which was reaction temperature of 500 °C, TNBP volume percentage of 4%, oxidant ratio of 1.5, and reaction time of 90 min. The TOC removal efficiency as an indicator of TNBP degradation was about 99%. Finally, in vitro cell viability assays for the cytotoxicity evaluation of fresh and SCW-treated solution were applied. The results of MTT showed that SCWO converts TNBP into by-product that did not induce any cytotoxicity.  相似文献   
8.
《Ceramics International》2022,48(8):10506-10515
The search for materials and methods capable of reducing human impacts on the environment is of utmost importance nowadays. This study's primary purpose was to analyze the technical feasibility of ceramic composites production utilizing Fundão Dam's Iron Ore Tailings (IOT), Blast Furnace Slag (BFS) from charcoal, and Foundry Sand (FS) as partial substitutes for the traditional raw materials – sand and clay – for application in building industry materials. The composites were molded in rectangular specimens and fired at temperatures of 900, 950, 1000, 1050, and 1200 °C. The developed materials were analyzed and characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Thermogravimetry (TGA), and Differential Thermal Analysis (DTA). The obtained materials had flexural strength modulus of up to 12.19 MPa, water absorption ranging from 2 to 22%, linear shrinkage ranging from 0.02 to 6.50%, and apparent density ranging from 2.03 to 1.63 g/cm3. The study of the internal structure formation process revealed the formation of amorphous structures in the composites. The results demonstrated that these waste materials may be jointly used in construction materials, contributing to the reduction of natural resource extraction, besides enabling their correct disposal, minimizing environmental impacts, and improving the life quality of the surrounding communities.  相似文献   
9.
众所周知,矿物质的成分是多种多样的,社会的发展和科学的进步需要运用到多重金属矿物质,在专业人员的勘探与挖掘中,发现了黄沙坪铅锌多金属矿,这个矿区中有丰富的有色金属,这个矿的发掘为研究成矿规律提供了物质基础,同时也为深部找矿提供了可靠的依据。本文主要分析黄沙坪铅锌多金属矿的成矿规律及深部找矿远景。  相似文献   
10.
The separation of iron oxide from banded hematite jasper(BHJ) assaying 47.8% Fe, 25.6% Si O2 and 2.30%Al2O3 using selective magnetic coating was studied. Characterization studies of the low grade ore indicate that besides hematite and goethite,jasper, a microcrystalline form of quartzite, is the major impurity associated with this ore. Beneficiation by conventional magnetic separation technique could yield a magnetic concentrate containing 60.8% Fe with 51% Fe recovery. In order to enhance the recovery of the iron oxide minerals, fine magnetite, colloidal magnetite and oleate colloidal magnetite were used as the coating material. When subjected to magnetic separation, the coated ore produces an iron concentrate containing 60.2% Fe with an enhanced recovery of56%. The AFM studies indicate that the coagulation of hematite particles with the oleate colloidal magnetite facilitates the higher recovery of iron particles from the low grade BHJ iron ore under appropriate conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号