首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22204篇
  免费   2572篇
  国内免费   1398篇
电工技术   787篇
技术理论   3篇
综合类   2390篇
化学工业   3728篇
金属工艺   468篇
机械仪表   844篇
建筑科学   1390篇
矿业工程   634篇
能源动力   668篇
轻工业   3948篇
水利工程   415篇
石油天然气   668篇
武器工业   186篇
无线电   1840篇
一般工业技术   2227篇
冶金工业   1308篇
原子能技术   173篇
自动化技术   4497篇
  2024年   159篇
  2023年   557篇
  2022年   833篇
  2021年   962篇
  2020年   911篇
  2019年   839篇
  2018年   793篇
  2017年   780篇
  2016年   836篇
  2015年   884篇
  2014年   1305篇
  2013年   1360篇
  2012年   1432篇
  2011年   1611篇
  2010年   1172篇
  2009年   1246篇
  2008年   1175篇
  2007年   1388篇
  2006年   1208篇
  2005年   1067篇
  2004年   946篇
  2003年   786篇
  2002年   651篇
  2001年   550篇
  2000年   433篇
  1999年   392篇
  1998年   261篇
  1997年   206篇
  1996年   217篇
  1995年   193篇
  1994年   159篇
  1993年   126篇
  1992年   108篇
  1991年   83篇
  1990年   57篇
  1989年   44篇
  1988年   43篇
  1987年   20篇
  1986年   18篇
  1985年   17篇
  1965年   16篇
  1964年   17篇
  1963年   21篇
  1961年   21篇
  1960年   19篇
  1959年   25篇
  1958年   17篇
  1957年   19篇
  1956年   23篇
  1955年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Electrocatalytic nitrogen reduction reaction (ENRR) offers a carbon-neutral process to fix nitrogen into ammonia, but its feasibility depends on the development of highly efficient electrocatalysts. Herein, we report that Fe ion grafted on MoO3 nanorods synthesized by an impregnation technique can efficiently enhance the electron harvesting ability and the selectivity of H+ during the NRR process in neutral electrolyte. In 0.1 M Na2SO4 solution, the electrocatalyst exhibited a remarkable NRR activity with an NH3 yield of 9.66 μg h?1 mg?1cat and a Faradaic efficiency (FE) of 13.1%, far outperforming the ungrafted MnO3. Density functional theory calculations revealed that the Fe sites are major activation centers along the alternating pathway.  相似文献   
2.
Gelatin is one of the most important multifunctional biopolymers and is widely used as an essential ingredient in food, pharmaceutical, and cosmetics. Porcine gelatin is regarded as the leading source of gelatin globally then followed by bovine gelatin. Porcine sources are favored over other sources since they are less expensive. However, porcine gelatin is religiously prohibited to be consumed by Muslims and the Jewish community. It is predicted that the global demand for gelatin will increase significantly in the future. Therefore, a sustainable source of gelatin with efficient production and free of disease transmission must be developed. The highest quality of Bovidae-based gelatin (BG) was acquired through alkaline pretreatment, which displayed excellent physicochemical and rheological properties. The utilization of mammalian- and plant-based enzyme significantly increased the gelatin yield. The emulsifying and foaming properties of BG also showed good stability when incorporated into food and pharmaceutical products. Manipulation of extraction conditions has enabled the development of custom-made gelatin with desired properties. This review highlighted the various modifications of extraction and processing methods to improve the physicochemical and functional properties of Bovidae-based gelatin. An in-depth analysis of the crucial stage of collagen breakdown is also discussed, which involved acid, alkaline, and enzyme pretreatment, respectively. In addition, the unique characteristics and primary qualities of BG including protein content, amphoteric property, gel strength, emulsifying and viscosity properties, and foaming ability were presented. Finally, the applications and prospects of BG as the preferred gelatin source globally were outlined.  相似文献   
3.
To satisfy arising energy needs and to handle the forthcoming worldwide climate transformation, the major research attention has been drawn to environmentally friendly, renewable and abundant energy resources. Hydrogen plays an ideal and significant role is such resources, due to its non-carbon based energy and production through clean energy. In this work, we have explored catalytic activity of a newly predicted haeckelite boron nitride quantum dot (haeck-BNQD), constructed from the infinite BN sheet, for its utilization in hydrogen production. Density functional theory calculations are employed to investigate geometry optimization, electronic and adsorption mechanism of haeck-BNQD using Gaussian16 package, employing the hybrid B3LYP and wB97XD functionals, along with 6–31G(d,p) basis set. A number of physical quantities such as HOMO/LUMO energies, density of states, hydrogen atom adsorption energies, Mulliken populations, Gibbs free energy, work functions, overpotentials, etc., have been computed and analysed in the context of the catalytic performance of haeck-BNQD for the hydrogen-evolution reaction (HER). Based on our calculations, we predict that the best catalytic performance will be obtained for H adsorption on top of the squares or the octagons of haeck-BNQD. We hope that our prediction of most active catalytic sites on haeck-BNQD for HER will be put to test in future experiments.  相似文献   
4.
In the present work, the bonding length, electronic structure, stability, and dehydrogenation properties of the Perovskite-type ZrNiH3 hydride, under different uniaxial/biaxial strains are investigated through ab-initio calculations based on the plane-wave pseudo-potential (PW-PP) approach. The findings reveal that the uniaxial/biaxial compressive and tensile strains are responsible for the structural deformation of the ZrNiH3 crystal structure, and its lattice deformation becomes more significant with decreasing or increasing the strain magnitude. Due to the strain energy contribution, the uniaxial/biaxial strain not only lowers the stability of ZrNiH3 but also decreases considerably the dehydrogenation enthalpy and decomposition temperature. Precisely, the formation enthalpy and decomposition temperature are reduced from ?67.73 kJ/mol.H2 and 521 K for non-strained ZrNiH3 up to ?33.73 kJ/mol.H2 and 259.5 K under maximal biaxial compression strain of ε = ?6%, and to ?50.99 kJ/mol.H2 and 392.23 K for the maximal biaxial tensile strain of ε = +6%. The same phenomenon has been also observed for the uniaxial strain, where the formation enthalpy and decomposition temperature are both decreased to ?39.36 kJ/mol.H2 and 302.78 K for a maximal uniaxial compressive strain of ε = - 12%, and to ?51.86 kJ/mol.H2 and 399 K under the maximal uniaxial tensile strain of ε = +12%. Moreover, the densities of states analysis suggests that the strain-induced variation in the dehydrogenation and structural properties of ZrNiH3 are strongly related to the Fermi level value of total densities of states. These ab-initio calculations demonstrate insightful novel approach into the development of Zr-based intermetallic hydrides for hydrogen storage practical applications.  相似文献   
5.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
6.
Lithium (Li) metal, as an appealing candidate for the next-generation of high-energy-density batteries, is plagued by its safety issue mainly caused by uncontrolled dendrite growth and infinite volume expansion. Developing new materials that can improve the performance of Li-metal anode is one of the urgent tasks. Herein, a new MXene derivative containing pure rutile TiO2 and N-doped carbon prepared by heat-treating MXene under a mixing gas, exhibiting high chemical activity in molten Li, is reported. The lithiation MXene derivative with a hybrid of LiTiO2-Li3N-C and Li offers outstanding electrochemical properties. The symmetrical cell assembling lithiation MXene derivative hybrid anode exhibits an ultra-long cycle lifespan of 2000 h with an overpotential of ≈30 mV at 1 mA cm−2, which overwhelms Li-based anodes reported so far. Additionally, long-term operations of 34, 350, and 500 h at 10 mA cm−2 can be achieved in symmetrical cells at temperatures of −10, 25, and 50 °C, respectively. Both experimental tests and density functional theory calculations confirm that the LiTiO2-Li3N-C skeleton serves as a promising host for Li infusion by alleviating volume variation. Simultaneously, the superlithiophilic interphase of Li3N guides Li deposition along the LiTiO2-Li3N-C skeleton to avoid dendrite growth.  相似文献   
7.
Chameleonic properties, i. e., the capacity of a molecule to hide polarity in non-polar environments and expose it in water, help achieving sufficient permeability and solubility for drug molecules with high MW. We present models of experimental measures of polarity for a set of 24 FDA approved drugs (MW 405-1113) and one PROTAC (MW 1034). Conformational ensembles in aqueous and non-polar environments were generated using molecular dynamics. A linear regression model that predicts chromatographic apparent polarity (EPSA) with a mean unsigned error of 10 Å2 was derived based on separate terms for donor, acceptor, and total molecular SASA. A good correlation (R2=0.92) with an experimental measure of hydrogen bond donor potential, Δlog Poct-tol, was found for the mean hydrogen bond donor SASA of the conformational ensemble scaled with Abraham's A hydrogen bond acidity. Two quantitative measures of chameleonic behaviour, the chameleonic efficiency indices, are introduced. We envision that the methods presented herein will be useful to triage designed molecules and prioritize those with the best chance of achieving acceptable permeability and solubility.  相似文献   
8.
汪子杰  张德明  徐晓慧 《中国矿业》2021,30(S1):238-244
胶莱盆地在胶东半岛地质构造及造山带研究中占有重要地位,其巨厚的白垩系陆相沉积是石油系统多年的研究目标。胶莱盆地南部白垩纪的岩石地层序列较其北部更为复杂,其认识几经反复,其中尤以大盛群与王氏群和莱阳群的部分单位的关系为甚。本次工作通过详细对比其沉积层序、相互关系、古生物组合、岩石学特征及同位素年龄等因素,认为大盛群与王氏群属同一沉积层序,沉积基底相同、沉积环境相似、古生物群落时代一致,二者具有同时代、同沉积相、同岩石组合的一致性,应是一套地层,建议今后使用统一地层名称。  相似文献   
9.
In this study, amaranth flour was used as an ingredient to prepare gluten-free cookies. The production process and attributes of amaranth cookies were characterised, and the potential use of amaranth flour as a functional ingredient was analysed. Cookies exhibited a non-uniform reddish brown colour and a cookie factor ratio of 4.5 ± 0.6. Storage studies indicated that after 3 weeks at room temperature cookies presented slight variations in the texture. Simulated gastrointestinal digestion of this product was able to release peptides capable of exerting potential antithrombotic and antihypertensive activities, IC50 values of 0.22 ± 0.04 and 0.23 ± 0.03 mg mL−1 protein, respectively. This work demonstrates for the first time that food made with amaranth flour exerts potential antithrombotic and antihypertensive activity. In conclusion, these amaranth cookies could be an alternative way of incorporating potentially health beneficial products for people who choose a conscious diet, including coeliac or vegan consumers.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号