首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23599篇
  免费   2074篇
  国内免费   1636篇
电工技术   551篇
综合类   1289篇
化学工业   6138篇
金属工艺   3125篇
机械仪表   1195篇
建筑科学   1544篇
矿业工程   395篇
能源动力   1037篇
轻工业   423篇
水利工程   110篇
石油天然气   349篇
武器工业   141篇
无线电   3175篇
一般工业技术   4520篇
冶金工业   2387篇
原子能技术   307篇
自动化技术   623篇
  2024年   71篇
  2023年   409篇
  2022年   557篇
  2021年   652篇
  2020年   768篇
  2019年   678篇
  2018年   592篇
  2017年   748篇
  2016年   776篇
  2015年   847篇
  2014年   1226篇
  2013年   1198篇
  2012年   1616篇
  2011年   1806篇
  2010年   1215篇
  2009年   1440篇
  2008年   1167篇
  2007年   1490篇
  2006年   1392篇
  2005年   1137篇
  2004年   979篇
  2003年   971篇
  2002年   883篇
  2001年   775篇
  2000年   736篇
  1999年   485篇
  1998年   430篇
  1997年   390篇
  1996年   312篇
  1995年   290篇
  1994年   217篇
  1993年   161篇
  1992年   181篇
  1991年   167篇
  1990年   192篇
  1989年   147篇
  1988年   47篇
  1987年   27篇
  1986年   17篇
  1985年   11篇
  1984年   16篇
  1983年   8篇
  1982年   13篇
  1981年   11篇
  1980年   11篇
  1979年   15篇
  1978年   7篇
  1977年   5篇
  1976年   6篇
  1975年   7篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
1.
《Ceramics International》2022,48(9):11981-11987
Previous research have reported that B4C–TiB2 composites could be prepared by the reactive sintering of TiC–B powder mixtures. However, due to spontaneous oxidation of raw powders, using TiC–B powder mixtures with a B/TiC molar ratio of 6: 1 introduced an intermediate phase of C during the sintering process, which deteriorated the hardness of the composites. In this report, the effects of B excess on the phase composition, microstructure, and mechanical properties of B4C–TiB2 composites fabricated by reactive hot pressing TiC–B powder mixtures were investigated. XRD and Raman spectra confirmed that lattice expansion occurred in B-rich boron carbide and BxC–TiB2 (x > 4) composites were obtained. The increasing B content improved the hardness and fracture toughness but decreased the flexural strength of BxC–TiB2 (x > 4) composites. When the molar ratio of B/TiC increased from 6.6:1 to 7.8:1, the Vickers hardness and the fracture toughness of the composites were enhanced from 26.7 GPa and 4.53 MPa m1/2 to 30.4 GPa and 5.78 MPa m1/2, respectively. The improved hardness was attributed to the microstructural improvement, while the toughening mechanism was crack deflection, crack bridging and crack branching.  相似文献   
2.
《Ceramics International》2021,47(18):25883-25894
Oily wastewater treatment is a global challenge due to the substantial amount of effluent resulted from many industrial and domestic activities. To overcome the challenge of using existing treatment approach and fouling, superoleophobic coatings were fabricated. In this study, a superoleophobic membrane surface was obtained using the sol-gel technique with perfluorooctanoate (PFO), poly (diallyl dimethylammonium chloride) (PDADMAC), and nanoparticles as complex-polymer nanocomposites. The effects of coating cycles on the surface structure, chemical properties, surface chemistry, and oleophobicity of the surface were examined using field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and oil contact angle measurement. The results showed that the coated layer successfully adhered to the substrate surface. However, the chemical stability with respect to oil contact angle (OCA) revealed a decline at pH 7 and pH 9 and maintained stability at pH 3. Besides, oil flux at 63.0 L/m2. h was achieved for PDADMAC-Al2O3/44 wt% PFO and the highest separation efficiency of 98% was obtained. Furthermore, the oil rejection decreases as the oil concentration increases from 1 to 3 g/L. OCA of 155° was obtained after 5 coating cycles. Apart from mitigating substrate fouling, the superoleophobic and superhydrophilic coating can be applied to a ceramic-based hollow fibre membrane and efficiently used for the separation of oil from oily wastewater.  相似文献   
3.
《Ceramics International》2021,47(20):28203-28209
Vanadium carbide (VC) as excellent ceramic and functional material is usually prepared by carbothermal reduction of V2O5 which must be extracted from a typical V slag by complex processes. Pollutants, such as ammonia-nitrogen wastewater, NH3 and CO2 are inevitably discharged. A novel and green method for VC preparation was proposed by one-step co-electrolysis of soluble NaVO3 and CO2 in molten salt. It was found that VC with high purity was easily obtained by reducing electrolysis temperature and CO2 flow rate to 600 °C and 10 mL min−1 at 3.0 V. Besides VC with particles and layered stacking structure in products, a small amount of carbon and oxygen elements existed. The atomic percentage contents of C, V, and O elements in VC were about 50.0%, 44.5% and 3.8%, respectively. During electrolysis, CO32− and VO3 was reduced at about −0.55 V (vs. Ag/AgCl) and −1.38 V (vs. Ag/AgCl), respectively. CO32− ions were more easily reduced than VO3, and was firstly reduced to CO22− and then converted to C. Then, VC was prepared by two routes from CO2 and NaVO3. One route is that VO3 ions are firstly electroreduced to VO2 ions and then are further electroreduced to VC with C. Another route is that VO3 ions are electroreduced to V which in-situ reacted with C to VC. Both VO3 and CO32− ions are electroreduced by two-step process. In final, VC is in-situ deposited on cathode. It provides a novel and green way to prepare VC and also achieves the high value-added utilization of vanadium slag and CO2.  相似文献   
4.
Laser ablation of high-temperature ceramic coatings results in thermal residual stresses due to which the coatings fail by cracking and debonding. Hence, the measurement of such residual stresses during laser ablation process holds utmost importance from the view of performance of coatings in extreme conditions. The present research aims at investigating the effect of laser parameters such as laser pulse energy, scanning speed and line spacing on thermal residual stresses induced in tantalum carbide-coated graphite substrates. Residual stresses were measured using micro-Raman spectroscopy and correlated with Raman peak shifts. Transient thermal analysis was performed using COMSOL Multiphysics to model the single ablated track and residual stresses were reported at low, moderate and high pulse energy regimes. The results showed that the initial laser conditions caused higher tensile residual stresses. Moderate pulse energy regime comprised higher compressive residual stresses due to off centre overlapping of the laser pulses. Higher pulse energy (250 μJ), higher scanning speed (1000 mm/s) and moderate line spacing (20 μm) caused accumulation of tensile residual stresses during the final stage of laser ablation. The deviation of experimental residual stresses from COMSOL numerical model was attributed to unaccounted additional stresses induced during thermal spraying process and deformation potentials in the numerical model.  相似文献   
5.
A novel TiO2 thin film was prepared on the ceramic hollow fiber by the sol-gel method using poly(vinylpyrrolidone) (PVP) and polyvinyl alcohol (PVA) as additives. SEM images verified the formation of TiO2 layer with various thickness using different composition of titania sols. The effect of the PVP and PVA contents on the TiO2 sol properties, the separation and the antifouling performance of the ultrafiltration membranes were investigated thoroughly. When the contents of PVP and PVA were 1.0 wt% and 0.8 wt%, respectively, the resultant membrane showed a thickness of 0.55 μm with a pure water flux of 255 L m?2 h?1. In addition, the adherent foulant bovine serum albumin was applied to evaluate the antifouling performance. During the three fouling-recovery cycles, the flux recovery ratio and the flux decay ratio maintained about 99% and 30%. The BSA flux and rejection were still 169 L m?2 h?1 and 96.9% after the cycles, indicating a superior antifouling property.  相似文献   
6.
Novel TiC-based composites were synthesized by reactive hot-pressing at 1800 °C for 1 h with ZrB2 addition as a sintering aid for the first time. The effects of ZrB2 contents on the phase composition, microstructure evolution, and mechanical properties were reported. Based on the reaction and solid solution coupling effects between ZrB2 and TiC, the product ZrC may be partially or completely dissolved into the TiC matrix, and then phase separation within the miscibility gap is observed to form lamellar nanostructured ZrC-rich (Zr, Ti)C. The TiC-10 mol.% ZrB2 (starting batch composition) exhibits good comprehensive mechanical properties of hardness 27.7 ± 1.3 GPa, flexural strength 659 ± 48 MPa, and fracture toughness of 6.5 ± 0.6 MPa m1/2, respectively, which reach or exceed most TiC-based composites using ceramics as sintering aids in the previous reports.  相似文献   
7.
《Ceramics International》2021,47(23):33353-33362
High thermal conductivity Si3N4 ceramics were fabricated using a one-step method consisting of reaction-bonded Si3N4 (RBSN) and post-sintering. The influence of Si content on nitridation rate, β/(α+β) phase rate, thermal conductivity and mechanical properties was investigated in this work. It is of special interest to note that the thermal conductivity showed a tendency to increase first and then decrease with increasing Si content. This experimental result shows that the optimal thermal conductivity and fracture toughness were obtained to be 66 W (m K)-1 and 12.0 MPa m1/2, respectively. As a comparison, the nitridation rate and β/(α+β) phase rate in a static pressure nitriding system, i.e., 97% (MS10), 97% (MS15), 97% (MS20) and 8.3% (MS10), 8.3% (MS15), 8.9% (MS20), respectively, have obvious advantages over those in a flowing nitriding system, i.e., 91% (MS10), 91% (MS15), 93% (MS20) and 3.1% (MS10), 3.3% (MS15), 3.3% (MS20), respectively. Moreover, high lattice integrity of the β-Si3N4 phase was observed, which can effectively confine O atoms into the β-Si3N4 lattice using MgO as a sintering additive. This result indicates that one-step sintering can provide a new route to prepare Si3N4 ceramics with a good combination of thermal conductivity and mechanical properties.  相似文献   
8.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
9.
10.
A new technique of EDM coring of single crystal silicon carbide (SiC) ingot was proposed in this paper. Currently single crystal SiC devices are still of high cost due to the high cost of bulk crystal SiC material and the difficulty in the fabrication process of SiC. In the manufacturing process of SiC ingot/wafer, localized cracks or defects occasionally occur due to thermal or mechanical causes resulted from fabrication processes which may waste the whole piece of material. To save the part of ingot without defects and maximize the material utilization, the authors proposed EDM coring method to cut out a no defect ingot from a larger diameter ingot which has localized defects. A special experimental setup was developed for EDM coring of SiC ingot in this study and its feasibility and machining performance were investigated. Meanwhile, in order to improve the machining rate, a novel multi-discharge EDM coring method by electrostatic induction feeding was established, which can realize multiple discharges in single pulse duration. Experimental results make it clear that EDM coring of SiC ingot can be carried out stably using the developed experimental setup. Taking advantage of the newly developed multi-discharge EDM method, both the machining speed and surface integrity can be improved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号