首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17806篇
  免费   1315篇
  国内免费   435篇
电工技术   309篇
技术理论   2篇
综合类   1184篇
化学工业   10994篇
金属工艺   298篇
机械仪表   791篇
建筑科学   618篇
矿业工程   164篇
能源动力   133篇
轻工业   731篇
水利工程   69篇
石油天然气   1021篇
武器工业   154篇
无线电   244篇
一般工业技术   2170篇
冶金工业   184篇
原子能技术   119篇
自动化技术   371篇
  2024年   47篇
  2023年   161篇
  2022年   199篇
  2021年   326篇
  2020年   328篇
  2019年   341篇
  2018年   308篇
  2017年   416篇
  2016年   470篇
  2015年   527篇
  2014年   903篇
  2013年   875篇
  2012年   1230篇
  2011年   1249篇
  2010年   975篇
  2009年   1074篇
  2008年   991篇
  2007年   1268篇
  2006年   1281篇
  2005年   1077篇
  2004年   922篇
  2003年   793篇
  2002年   664篇
  2001年   558篇
  2000年   449篇
  1999年   443篇
  1998年   317篇
  1997年   273篇
  1996年   172篇
  1995年   160篇
  1994年   146篇
  1993年   156篇
  1992年   117篇
  1991年   81篇
  1990年   49篇
  1989年   50篇
  1988年   27篇
  1987年   17篇
  1986年   12篇
  1985年   23篇
  1984年   27篇
  1983年   20篇
  1982年   23篇
  1980年   2篇
  1978年   1篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
This study presents the development and characterization of PVDF-conjugated polymer nanofiber-based systems. Five different conducting polymers (CPs) were synthesized successfully and used to create the nanofiber systems. The CPs used are polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polyanthranilic acid (PANA), and polycarbazole (PCZ). Nanofiber systems were produced utilizing the Forcespinning® technique. The nanofiber systems were developed by mechanical stretching. No electrical field or post-process poling was used in the nanofiber systems. The morphology, structure, electrochemical and piezoelectric performance was characterized. All of the nanofiber PVDF/CP systems displayed higher piezoelectric performance than the fine fiber PVDF systems. The PVDF/PPY nanofiber system displays the highest piezoelectric performance of 15.56 V. The piezoelectric performance of the PVDF/CP nanofiber systems favors potential for an attractive source of energy where highly flexible membranes could be used in power actuators, sensors and portable, and wireless devices to mention some.  相似文献   
2.
Increasing the reaction temperature of the living cationic polymerization of isobutylene is crucial for industrial production due to the cost of refrigeration. The reaction temperature increase was achieved with an accelerated reaction rate using a flow reaction system. The polymerization conditions, including the flow reactor design, were based on the results of kinetic studies. Utilizing a milli‐scale flow reactor, polyisobutylene, which has a narrow molecular weight distribution, was obtained within a considerably short residence time at a high temperature. Furthermore, it was confirmed that the value of Mw/Mn correlates with the product of the Reynolds number and the angle of collision.  相似文献   
3.
Material encapsulation is a relatively new technique for coating a micro/nanosize particle or droplet with polymeric or inorganic shell. Encapsulation technology has many applications in various fields including drug delivery, cosmetic, agriculture, thermal energy storage, textile, and self-healing polymers. Poly(methyl methacrylate) (PMMA) is widely used as shell material in encapsulation due to its high chemical stability, biocompatibility, nontoxicity, and good mechanical properties. The main approach for micro/nanoencapsulation of materials using PMMA as shell comprises emulsion-based techniques such as emulsion polymerization and solvent evaporation from oil-in-water emulsion. In the present review, we first focus on the encapsulation techniques of liquid materials with PMMA shell by analyzing the effective processing parameters influencing the preparation of PMMA micro/nanocapsules. We then describe the morphology of PMMA capsules in emulsion systems according to thermodynamic relations. The techniques to investigation of mechanical properties of capsule shell and the release mechanisms of core material from PMMA capsules were also investigated. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48039.  相似文献   
4.
A 2D computational fluid dynamics (Eulerian–Eulerian) multiphase flow model coupled with a population balance model (CFD-PBM) was implemented to investigate the fluidization structure in terms of entrance region in an industrial-scale gas phase fluidized bed reactor. The simulation results were compared with the industrial data, and good agreement was observed. Two cases including perforated distributor and complete sparger were applied to examine the flow structure through the bed. The parametric sensitivity analysis of time step, number of node, drag coefficient, and specularity coefficient was carried out. It was found that the results were more sensitive to the drag model. The results showed that the entrance configuration has significant effect on the flow structure. While the dead zones are created in both corners of the distributors, the perforated distributor generates more startup bubbles, heterogeneous flow field, and better gas–solid interaction above the entrance region due to jet formation.  相似文献   
5.
A series of methacrylate-acrylonitrile-butadiene-styrene (MABS) resins was prepared using bulk polymerization. The polarity of the continuous phase and the compatibility of two phases were changed by adjusting the methyl methacrylate (MMA) content, choosing values that were close to styrene-butadiene rubber solubility value. The possibility of controlling the microstructure of the MABS resin by changing the polarity of the components and the compatibility of two phases was assessed. The dynamic mechanical analysis shows that the compatibility of two phases varies with the MMA content. The morphological analysis shows that increasing MMA contents results in a gradual decrease in the sub-inclusion structure with a network skeleton of rubber particles, and that all the particles become solid rubber when the MMA content reaches 75%. The sub-inclusion structure reappears but does not have a network skeleton when the MMA content is 90%. The impact strength and morphological analysis indicate that the solid rubber particles and the sub-inclusion structure with a network skeleton provide excellent toughness, while the sub-inclusion structure without a network skeleton does not. In contrast, the transmittance of the ABS resin first increased and then decreased with increasing MMA content.  相似文献   
6.
Although many colloidal assembling systems have been reported, most systems suffer from severe aggregation under high solid concentrations, which can often be observed in typical hetero-aggregation system. In this study, we created a hetero-assembly system using concentrated (~50 vol%) suspensions by mixing large SiO2 particles modified with polyacrylic acid partially complexed with oleylamine (PAA-OAm) and small SiO2 particles modified with polyethyleneimine partially complexed with oleic acid (PEI-OA) in a non-aqueous solvent. We demonstrated that hetero-assembly is driven by the interactions between the uncomplexed carboxyl/amine groups of the PAA/PEI present on the particles, while severe aggregation is simultaneously prevented by the steric repulsions of the aliphatic oleyl chains. Comparison of the cross sections of the in-situ solidified hetero-assembled suspensions with those of ideally assembled structures which were reproduced by a simulation considering the statistical distribution of particles strongly supported successful particle assembling via the proposed approach. The results revealed that the OA content in the PEI-OA complex was the dominant factor that controlled the dispersion and assembling state of the binary particles. The significance of this study is that our findings will provide a class of colloidal dispersion state which binary particles were assembled in a high solid content suspension without forming strong aggregates.  相似文献   
7.
A series of novel aliphatic poly(β‐thioether ester)s with various methylene group contents were prepared by direct lipase‐catalyzed polycondensation of the monomer with an acid‐labile β‐thiopropionate group. The polycondensation reaction using immobilized lipase B from Candida antarctica was carried out in diphenyl ether at 90 °C. Poly(β‐thioether ester)s with high molecular weights of 20 500–57 000 Da and narrow polydispersities in the range 1.40–1.48 were obtained. Thermogravimetric analysis, differential scanning calorimetry and wide‐angle X‐ray diffraction were used to investigate the thermal properties and crystal structures of these polyesters. All the poly(β‐thioether ester)s were semicrystalline polymers and thermally stable up to at least 200 °C. In vitro degradation studies showed that they can rapidly degrade under acidic conditions by the hydrolysis of the β‐thiopropionate groups, suggesting their potential as acid‐degradable polymeric materials. © 2019 Society of Chemical Industry  相似文献   
8.
《Ceramics International》2021,47(23):32699-32709
Digital light processing (DLP)-based ceramic stereolithography has attracted significant attentions due to the high printing speed and high dimensional accuracy of DLP printers. However, undesired dropping of unfinished ceramic parts during printing, owing to inadequate adhesion between the first cured layer and the substrate of the building platform, still remains a challenge. In this study, the relationship between the adhesion properties of ultraviolet (UV)-curable alumina (α-Al2O3) suspensions and the functionalities and structures of UV-curable acrylate monomers was investigated. With an increase in the proportions of monofunctional monomers, the adhesion abilities of UV-curable alumina suspensions enhanced because of reduced volume shrinkage, however, inferior curing performances were observed due to a decrease in the double bond densities. Furthermore, the large-volume branched chain structures in monofunctional monomers and ethyoxyl groups in polyfunctional monomers effectively decreased the volume contraction, improving the adhesion performances of UV-curable alumina suspensions and facilitating the conversion of double bonds to provide excellent curing properties, further guaranteeing strong adhesion of these suspensions to the substrate.  相似文献   
9.
10.
The potential of time‐domain nuclear magnetic resonance (TD‐NMR) for the real‐time monitoring of solution radical polymerizations is demonstrated. A model system composed of a redox‐pair initiator system, acrylamide as monomer and water as solvent was investigated. A second‐generation continuous wave free precession technique was employed to measure the longitudinal relaxation time constant (T1) of the samples throughout the polymerization reactions. This parameter was shown to be sensitive to the reactant feed free‐radical enhancement of the water molecule relaxation time, making it a good probe to monitor monomer conversion in real time in an automated, non‐destructive fashion. It was found that the T1 value was better than the transverse relaxation time constant (T2) for describing the evolution of the polymerization reactions, due to its greater sensitivity to paramagnetic effects. The TD‐NMR signal variation observed was linked to the formation, propagation and termination steps of the radical polymerization kinetics scheme. These first results may contribute to the application of real‐time monitoring of radical polymerization reactions employing low‐cost and robust TD‐NMR spectrometers. © 2018 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号