首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
化学工业   6篇
轻工业   1篇
  2021年   3篇
  2020年   1篇
  2015年   2篇
  2006年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The widespread implementation of mass sequencing has revealed a diverse landscape of small RNAs derived from larger precursors. Whilst many of these are likely to be byproducts of degradation, there are nevertheless metabolically stable fragments derived from tRNAs, rRNAs, snoRNAs, and other non-coding RNA, with a number of examples of the production of such fragments being conserved across species. Coupled with specific interactions to RNA-binding proteins and a growing number of experimentally reported examples suggesting function, a case is emerging whereby the biological significance of small non-coding RNAs extends far beyond miRNAs and piRNAs. Related to this, a similarly complex picture is emerging of non-canonical roles for the non-coding precursors, such as for snoRNAs that are also implicated in such areas as the silencing of gene expression and the regulation of alternative splicing. This is in addition to a body of literature describing snoRNAs as an additional source of miRNA-like regulators. This review seeks to highlight emerging roles for such non-coding RNA, focusing specifically on “new” roles for snoRNAs and the small fragments derived from them.  相似文献   
2.
Autism spectrum disorder (ASD) is a multifaced neurodevelopmental disorder that becomes apparent during early childhood development. The complexity of ASD makes clinically diagnosing the condition difficult. Consequently, by identifying the biomarkers associated with ASD severity and combining them with clinical diagnosis, one may better factionalize within the spectrum and devise more targeted therapeutic strategies. Currently, there are no reliable biomarkers that can be used for precise ASD diagnosis. Consequently, our pilot experimental cohort was subdivided into three groups: healthy controls, individuals those that express severe symptoms of ASD, and individuals that exhibit mild symptoms of ASD. Using next-generation sequencing, we were able to identify several circulating non-coding RNAs (cir-ncRNAs) in plasma. To the best of our knowledge, this study is the first to show that miRNAs, piRNAs, snoRNAs, Y-RNAs, tRNAs, and lncRNAs are stably expressed in plasma. Our data identify cir-ncRNAs that are specific to ASD. Furthermore, several of the identified cir-ncRNAs were explicitly associated with either the severe or mild groups. Hence, our findings suggest that cir-ncRNAs have the potential to be utilized as objective diagnostic biomarkers and clinical targets.  相似文献   
3.
During the last 30 years, a number of genetic code alterations have been uncovered in bacteria and in the mitochondria and cytoplasm of various eukaryotes, invalidating the hypothesis that the genetic code is universal and frozen. In the mitochondria of most yeasts, the UGA stop codon is decoded as tryptophan and the four leucine codons of the CUN family (N = any nucleotide) are decoded as threonine. Recently, a unique genetic code change involving the decoding of the leucine CUG codon as serine was discovered in the cytoplasm of Candida and Debaryomyces species, indicating that the genetic code of yeasts may be under specific evolutionary pressures whose molecular nature is not yet fully understood. This genetic code alteration is mediated by a novel serine-tRNA that acquired a leucine 5'-CAG-3' anticodon (ser-tRNACAG) through insertion of an adenosine in the intron of its gene. This event, which occurred 272 +/- 25 million years ago, reprogrammed the identity of approximately 30 000 CUG codons existent in the ancestor of these yeasts and had a profound impact on the evolution of the genus Candida and of other species. Here, we review the most recent results and concepts arising from the study of this genetic code change and highlight how its study is changing our views of the evolution of the genetic code.  相似文献   
4.
5.
6.
The mitochondrial genome of the nematode Romanomermis culicivorax encodes for miniaturized hairpin-like tRNA molecules that lack D- as well as T-arms, strongly deviating from the consensus cloverleaf. The single tRNA nucleotidyltransferase of this organism is fully active on armless tRNAs, while the human counterpart is not able to add a complete CCA-end. Transplanting single regions of the Romanomermis enzyme into the human counterpart, we identified a beta-turn element of the catalytic core that—when inserted into the human enzyme—confers full CCA-adding activity on armless tRNAs. This region, originally identified to position the 3′-end of the tRNA primer in the catalytic core, dramatically increases the enzyme’s substrate affinity. While conventional tRNA substrates bind to the enzyme by interactions with the T-arm, this is not possible in the case of armless tRNAs, and the strong contribution of the beta-turn compensates for an otherwise too weak interaction required for the addition of a complete CCA-terminus. This compensation demonstrates the remarkable evolutionary plasticity of the catalytic core elements of this enzyme to adapt to unconventional tRNA substrates.  相似文献   
7.
Aminoacyl‐tRNAs (aa‐tRNAs) participate in a vast repertoire of metabolic pathways, including the synthesis of the peptidoglycan network in the cell walls of bacterial pathogens. Synthesis of aminoacyl‐tRNA analogues is critical for further understanding the mechanisms of these reactions. Here we report the semi‐synthesis of 3′‐fluoro analogues of Ala‐tRNAAla. The presence of fluorine in the 3′‐position blocks Ala at the 2′‐position by preventing spontaneous migration of the residue between positions 2′ and 3′. NMR analyses showed that substitution of the 3′‐hydroxy group by fluorine in the ribo configuration favours the S‐type conformation of the furanose ring of terminal adenosine A76. In contrast, the N‐type conformation is favoured by the presence of fluorine in the xylo configuration. Thus, introduction of fluorine in the ribo and xylo configurations affects the conformation of the furanose ring in reciprocal ways. These compounds should provide insight into substrate recognition by Fem transferases and the Ala‐tRNA synthetases.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号