首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   15篇
  国内免费   12篇
电工技术   1篇
综合类   1篇
化学工业   78篇
金属工艺   10篇
机械仪表   5篇
建筑科学   3篇
轻工业   13篇
无线电   10篇
一般工业技术   30篇
冶金工业   1篇
原子能技术   3篇
自动化技术   2篇
  2023年   5篇
  2022年   32篇
  2021年   39篇
  2020年   6篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   8篇
  2013年   5篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
1.
Blood platelets’ adenosine receptors (AR) are considered to be a new target for the anti-platelet therapy. This idea is based on in vitro studies which show that signaling mediated by these receptors leads to a decreased platelet response to activating stimuli. In vivo evidence for the antithrombotic activity of AR agonists published to date were limited, however, to the usage of relatively high doses given in bolus. The present study was aimed at verifying if these substances used in lower doses in combination with inhibitors of P2Y12 could serve as components of dual anti-platelet therapy. We have found that a selective A2A agonist 2-hexynyl-5’-N-ethylcarboxamidoadenosine (HE-NECA) improved the anti-thrombotic properties of either cangrelor or prasugrel in the model of ferric chloride-induced experimental thrombosis in mice. Importantly, HE-NECA was effective not only when applied in bolus as other AR agonists in the up-to-date published studies, but also when given chronically. In vitro thrombus formation under flow conditions revealed that HE-NECA enhanced the ability of P2Y12 inhibitors to decrease fibrinogen content in thrombi, possibly resulting in their lower stability. Adenosine receptor agonists possess a certain hypotensive effect and an ability to increase the blood–brain barrier permeability. Therefore, the effects of anti-thrombotic doses of HE-NECA on blood pressure and the blood–brain barrier permeability in mice were tested. HE-NECA applied in bolus caused a significant hypotension in mice, but the effect was much lower when the substance was given in doses corresponding to that obtained by chronic administration. At the same time, no significant effect of HE-NECA was observed on the blood–brain barrier. We conclude that chronic administration of the A2A agonist can be considered a potential component of a dual antithrombotic therapy. However, due to the hypotensive effect of the substances, dosage and administration must be elaborated to minimize the side-effects. The total number of animals used in the experiments was 146.  相似文献   
2.
Platelets play a crucial role in the physiology of primary hemostasis and pathological processes such as arterial thrombosis; thus, developing a therapeutic target that prevents platelet activation can reduce arterial thrombosis. Pterostilbene (PTE) has remarkable pharmacological activities, including anticancer and neuroprotection. Few studies have reported the effects of pterostilbene on platelet activation. Thus, we examined the inhibitory mechanisms of pterostilbene in human platelets and its role in vascular thrombosis prevention in mice. At low concentrations (2–8 μM), pterostilbene strongly inhibited collagen-induced platelet aggregation. Furthermore, pterostilbene markedly diminished Lyn, Fyn, and Syk phosphorylation and hydroxyl radical formation stimulated by collagen. Moreover, PTE directly hindered integrin αIIbβ3 activation through interfering with PAC-1 binding stimulated by collagen. In addition, pterostilbene affected integrin αIIbβ3-mediated outside-in signaling, such as integrin β3, Src, and FAK phosphorylation, and reduced the number of adherent platelets and the single platelet spreading area on immobilized fibrinogen as well as thrombin-stimulated fibrin clot retraction. Furthermore, pterostilbene substantially prolonged the occlusion time of thrombotic platelet plug formation in mice. This study demonstrated that pterostilbene exhibits a strong activity against platelet activation through the inhibition of integrin αIIbβ3-mediated inside-out and outside-in signaling, suggesting that pterostilbene can serve as a therapeutic agent for thromboembolic disorders.  相似文献   
3.
The antiphospholipid syndrome (APS) is characterized by thrombosis and/or pregnancy morbidity with the persistent presence of antiphospholipid antibodies (aPLs). Laboratory criteria for the classification of APS include the detection of lupus anticoagulant (LAC), anti-cardiolipin (aCL) antibodies and anti-β2glycoprotein I (aβ2GPI) antibodies. Clinical criteria for the classification of thrombotic APS include venous and arterial thrombosis, along with microvascular thrombosis. Several aPLs, including LAC, aβ2GPI and anti-phosphatidylserine/prothrombin antibodies (aPS/PT) have been associated with arterial thrombosis. The Von Willebrand Factor (VWF) plays an important role in arterial thrombosis by mediating platelet adhesion and aggregation. Studies have shown that aPLs antibodies present in APS patients are able to increase the risk of arterial thrombosis by upregulating the plasma levels of active VWF and by promoting platelet activation. Inflammatory reactions induced by APS may also provide a suitable condition for arterial thrombosis, mostly ischemic stroke and myocardial infarction. The presence of other cardiovascular risk factors can enhance the effect of aPLs and increase the risk for thrombosis even more. These factors should therefore be taken into account when investigating APS-related arterial thrombosis. Nevertheless, the exact mechanism by which aPLs can cause thrombosis remains to be elucidated.  相似文献   
4.
This research project sought to design and implement a computerized clinical decision support system (CDSS) that was able to identify patients who were at risk of pulmonary embolism (PE) and deep vein thrombosis (DVT), as well as produce reminders for prophylactic action for these diseases. The main purpose of the CDSS was to attempt to reduce the morbidity and mortality caused by embolism and thrombosis in patients admitted to hospitals. After implementation of this system in one of the large educational hospitals of Iran, a standard questionnaire was used, and interviews were conducted with physicians and nurses to evaluate the performance of the designed system for reducing the incidence of pulmonary embolism and thrombosis. From physicians and nurses’ point of view, a system which assists the medical staff in making better decisions regarding patient care, and also reminds pulmonary embolism and thrombosis preventive procedures with timely warnings, can influence patient care quality improvement and lead to the improved performance of the medical staff in preventing the incidence of pulmonary embolism and thrombosis.  相似文献   
5.
Protease-activated receptors (PARs) are a family of four G protein-coupled receptors that exhibit increasingly appreciated differences in signaling and regulation both within and between the receptor class. By nature of their proteolytic self-activation mechanism, PARs have unique processes of receptor activation, “ligand” binding, and desensitization/resensitization. These distinctive aspects have presented both challenges and opportunities in the targeting of PARs for therapeutic benefit—the most notable example of which is inhibition of PAR1 on platelets for the prevention of arterial thrombosis. However, more recent studies have uncovered further distinguishing features of PAR-mediated signaling, revealing mechanisms by which identical proteases elicit distinct effects in the same cell, as well as how distinct proteases produce different cellular consequences via the same receptor. Here we review this differential signaling by PARs, highlight how important distinctions between PAR1 and PAR4 are impacting on the progress of a new class of anti-thrombotic drugs, and discuss how these more recent insights into PAR signaling may present further opportunities for manipulating PAR activation and signaling in the development of novel therapies.  相似文献   
6.
Drug eluting stents are associated with late stent thrombosis (LST), delayed healing and prolonged exposure of stent struts to blood flow. Using macroscale disturbed and undisturbed fluid flow waveforms, we numerically and experimentally determined the effects of microscale model strut geometries upon the generation of prothrombotic conditions that are mediated by flow perturbations. Rectangular cross-sectional stent strut geometries of varying heights and corresponding streamlined versions were studied in the presence of disturbed and undisturbed bulk fluid flow. Numerical simulations and particle flow visualization experiments demonstrated that the interaction of bulk fluid flow and stent struts regulated the generation, size and dynamics of the peristrut flow recirculation zones. In the absence of endothelial cells, deposition of thrombin-generated fibrin occurred primarily in the recirculation zones. When endothelium was present, peristrut expression of anticoagulant thrombomodulin (TM) was dependent on strut height and geometry. Thinner and streamlined strut geometries reduced peristrut flow recirculation zones decreasing prothrombotic fibrin deposition and increasing endothelial anticoagulant TM expression. The studies define physical and functional consequences of macro- and microscale variables that relate to thrombogenicity associated with the most current stent designs, and particularly to LST.  相似文献   
7.
The pathophysiology of sepsis involves inflammation and hypercoagulability, which lead to microvascular thrombosis and compromised organ perfusion. Dipeptidyl peptidase (DPP)-4 inhibitors, e.g., linagliptin, are commonly used anti-diabetic drugs known to exert anti-inflammatory effects. However, whether these drugs confer an anti-thrombotic effect that preserves organ perfusion in sepsis remains to be investigated. In the present study, human umbilical vein endothelial cells (HUVECs) were treated with linagliptin to examine its anti-inflammatory and anti-thrombotic effects under tumor necrosis factor (TNF)-α treatment. To validate findings from in vitro experiments and provide in vivo evidence for the identified mechanism, a mouse model of lipopolysaccharide (LPS)-induced systemic inflammatory response syndrome was used, and pulmonary microcirculatory thrombosis was measured. In TNF-α-treated HUVECs and LPS-injected mice, linagliptin suppressed expressions of interleukin-1β (IL-1β) and intercellular adhesion molecule 1 (ICAM-1) via a nuclear factor-κB (NF-κB)–dependent pathway. Linagliptin attenuated tissue factor expression via the Akt/endothelial nitric oxide synthase pathway. In LPS-injected mice, linagliptin pretreatment significantly reduced thrombosis in the pulmonary microcirculation. These anti-inflammatory and anti-thrombotic effects were independent of blood glucose level. Together the present results suggest that linagliptin exerts protective effects against endothelial inflammation and microvascular thrombosis in a mouse model of sepsis.  相似文献   
8.
There is accumulating evidence that platelets play roles beyond their traditional functions in thrombosis and hemostasis, e.g., in inflammatory processes, infection and cancer, and that they interact, stimulate and regulate cells of the innate immune system such as neutrophils, monocytes and macrophages. In this review, we will focus on platelet activation in hemostatic and inflammatory processes, as well as platelet interactions with neutrophils and monocytes/macrophages. We take a closer look at the contributions of major platelet receptors GPIb, αIIbβ3, TLT-1, CLEC-2 and Toll-like receptors (TLRs) as well as secretions from platelet granules on platelet–neutrophil aggregate and neutrophil extracellular trap (NET) formation in atherosclerosis, transfusion-related acute lung injury (TRALI) and COVID-19. Further, we will address platelet–monocyte and macrophage interactions during cancer metastasis, infection, sepsis and platelet clearance.  相似文献   
9.
10.
Platelets are cytoplasmatic fragments from bone marrow megakaryocytes present in blood. In this work, we review the basis of platelet mechanisms, their participation in syndromes and in arterial thrombosis, and their potential as a target for designing new antithrombotic agents. The option of new biotechnological sources is also explored.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号