首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5374篇
  免费   580篇
  国内免费   285篇
电工技术   48篇
综合类   235篇
化学工业   1750篇
金属工艺   209篇
机械仪表   277篇
建筑科学   131篇
矿业工程   11篇
能源动力   19篇
轻工业   1277篇
水利工程   6篇
石油天然气   41篇
武器工业   11篇
无线电   491篇
一般工业技术   1065篇
冶金工业   302篇
原子能技术   96篇
自动化技术   270篇
  2024年   39篇
  2023年   150篇
  2022年   575篇
  2021年   639篇
  2020年   268篇
  2019年   260篇
  2018年   216篇
  2017年   202篇
  2016年   245篇
  2015年   260篇
  2014年   298篇
  2013年   383篇
  2012年   339篇
  2011年   289篇
  2010年   250篇
  2009年   228篇
  2008年   186篇
  2007年   196篇
  2006年   191篇
  2005年   195篇
  2004年   160篇
  2003年   102篇
  2002年   98篇
  2001年   92篇
  2000年   59篇
  1999年   39篇
  1998年   33篇
  1997年   29篇
  1996年   30篇
  1995年   26篇
  1994年   20篇
  1993年   17篇
  1992年   15篇
  1991年   14篇
  1990年   12篇
  1989年   17篇
  1988年   8篇
  1987年   14篇
  1986年   14篇
  1985年   9篇
  1984年   3篇
  1983年   3篇
  1982年   8篇
  1980年   3篇
  1979年   2篇
  1976年   1篇
  1958年   1篇
  1957年   1篇
排序方式: 共有6239条查询结果,搜索用时 15 毫秒
1.
Our aim was to investigate the subset distribution and function of circulating monocytes, proinflammatory cytokine levels, gut barrier damage, and bacterial translocation in chronic spinal cord injury (SCI) patients. Thus, 56 SCI patients and 28 healthy donors were studied. The levels of circulating CD14+highCD16, CD14+highCD16+, and CD14+lowCD16+ monocytes, membrane TLR2, TLR4, and TLR9, phagocytic activity, ROS generation, and intracytoplasmic TNF-α, IL-1, IL-6, and IL-10 after lipopolysaccharide (LPS) stimulation were analyzed by polychromatic flow cytometry. Serum TNF-α, IL-1, IL-6 and IL-10 levels were measured by Luminex and LPS-binding protein (LBP), intestinal fatty acid-binding protein (I-FABP) and zonulin by ELISA. SCI patients had normal monocyte counts and subset distribution. CD14+highCD16 and CD14+highCD16+ monocytes exhibited decreased TLR4, normal TLR2 and increased TLR9 expression. CD14+highCD16 monocytes had increased LPS-induced TNF-α but normal IL-1, IL-6, and IL-10 production. Monocytes exhibited defective phagocytosis but normal ROS production. Patients had enhanced serum TNF-α and IL-6 levels, normal IL-1 and IL-10 levels, and increased circulating LBP, I-FABP, and zonulin levels. Chronic SCI patients displayed impaired circulating monocyte function. These patients exhibited a systemic proinflammatory state characterized by enhanced serum TNF-α and IL-6 levels. These patients also had increased bacterial translocation and gut barrier damage.  相似文献   
2.
Mesenchymal stem cells (MSCs) are the main cell players in tissue repair and thanks to their self-renewal and multi-lineage differentiation capabilities, they gained significant attention as cell source for tissue engineering (TE) approaches aimed at restoring bone and cartilage defects. Despite significant progress, their therapeutic application remains debated: the TE construct often fails to completely restore the biomechanical properties of the native tissue, leading to poor clinical outcomes in the long term. Pulsed electromagnetic fields (PEMFs) are currently used as a safe and non-invasive treatment to enhance bone healing and to provide joint protection. PEMFs enhance both osteogenic and chondrogenic differentiation of MSCs. Here, we provide extensive review of the signaling pathways modulated by PEMFs during MSCs osteogenic and chondrogenic differentiation. Particular attention has been given to the PEMF-mediated activation of the adenosine signaling and their regulation of the inflammatory response as key player in TE approaches. Overall, the application of PEMFs in tissue repair is foreseen: (1) in vitro: to improve the functional and mechanical properties of the engineered construct; (2) in vivo: (i) to favor graft integration, (ii) to control the local inflammatory response, and (iii) to foster tissue repair from both implanted and resident MSCs cells.  相似文献   
3.
The phosphorylation of serine 10 in histone 3 (p-S10H3) has recently been demonstrated to participate in spinal nociceptive processing. However, superficial dorsal horn (SDH) neurons involved in p-S10H3-mediated nociception have not been fully characterized. In the present work, we combined immunohistochemistry, in situ hybridization with the retrograde labeling of projection neurons to reveal the subset of dorsal horn neurons presenting an elevated level of p-S10H3 in response to noxious heat (60 °C), causing burn injury. Projection neurons only represented a small percentage (5%) of p-S10H3-positive cells, while the greater part of them belonged to excitatory SDH interneurons. The combined immunolabeling of p-S10H3 with markers of already established interneuronal classes of the SDH revealed that the largest subset of neurons with burn injury-induced p-S10H3 expression was dynorphin immunopositive in mice. Furthermore, the majority of p-S10H3-expressing dynorphinergic neurons proved to be excitatory, as they lacked Pax-2 and showed Lmx1b-immunopositivity. Thus, we showed that neurochemically heterogeneous SDH neurons exhibit the upregulation of p-S10H3 shortly after noxious heat-induced burn injury and consequential tissue damage, and that a dedicated subset of excitatory dynorphinergic neurons is likely a key player in the development of central sensitization via the p-S10H3 mediated pathway.  相似文献   
4.
Botulism has been known for about three centuries, and since its discovery, botulinum toxin has been considered one of the most powerful toxins. However, throughout the 20th century, several medical applications have been discovered, among which the treatment of spasticity stands out. Botulinum toxin is the only pharmacological treatment recommended for spasticity of strokes and cerebral palsy. Although its use as an adjuvant treatment against spasticity in spinal cord injuries is not even approved, botulinum toxin is being used against such injuries. This article describes the advances that have been made throughout history leading to the therapeutic use of botulinum toxin and, in particular, its application to the treatment of spasticity in spinal cord injury.  相似文献   
5.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
6.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
7.
The main cause of death and serious disability in bicycle accidents is traumatic brain injury (TBI). The aim of this population-based study was to assess the incidence and costs of bicycle-related TBI across various age groups, and in comparison to all bicycle-related injuries, to identify main risk groups for the development of preventive strategies.Data from the National Injury Surveillance System and National Medical Registration were used for all patients with bicycle-related injuries and TBI who visited a Dutch emergency department (ED) between 1998 and 2012. Demographics and national, weighted estimates of injury mechanism, injury severity and costs were analysed per age group. Direct healthcare costs and indirect costs were determined using the incidence-based Dutch Burden of Injury Model.Between 1998 and 2012, the incidence of ED treatments due to bicycle-related TBI strongly increased with 54%, to 43 per 100,000 persons in 2012. However, the incidence of all bicycle-related injuries remained stable, from 444 in 1998 to 456/100,000 in 2012. Incidence of hospital admission increased in both TBI (92%) and all injuries from cycling (71%). Highest increase in incidence of both ED treatments and hospital admissions was seen in adults aged 55+. The injury rate of TBI per kilometre travelled increased (44%) except in children, but decreased (−4%) for all injuries, showing a strong decrease in children (−36%) but an increase in men aged 25+, and women aged 15+. Total costs of bicycle-related TBI were €74.5 million annually. Although bicycle-related TBI accounted for 9% of the incidence of all ED treatments due to cycling, it accounted for 18% of the total costs due to all bicycle-related injuries (€410.7 million). Children and adolescents (aged 0–24) had highest incidence of ED treatments due to bicycle-related injuries. Men in the working population (aged 15–64) had highest indirect costs following injuries from cycling, including TBI. Older cyclists (aged 55+) were identified as main risk group for TBI, as they had highest ED attendance, injury rate, injury severity, admission to hospital or intensive care unit, and costs.Incidence of ED treatments due to cycling are high and often involve TBI, imposing a high burden on individuals and society. Older cyclists aged 55+ were identified as main risk group for TBI to be targeted in preventive strategies, due to their high risk for (serious) injuries and ever-increasing share of ED visits and hospital admissions.  相似文献   
8.
This study aimed at investigating the possible mechanisms of hepatic protective activity of Cichorium intybus L. (chicory) in acute liver injury. Pathological observation, reactive oxygen species (ROS) detection and measurements of biochemical indexes on mouse models proved hepatic protective effect of Cichorium intybus L. Identification of active compounds in Cichorium intybus L. was executed through several methods including ultra performance liquid chromatography/time of flight mass spectrometry (UPLC-TOF-MS). Similarity ensemble approach (SEA) docking, molecular modeling, molecular docking, and molecular dynamics (MD) simulation were applied in this study to explore possible mechanisms of the hepato-protective potential of Cichorium intybus L. We then analyzed the chemical composition of Cichorium intybus L., and found their key targets. Furthermore, in vitro cytological examination and western blot were used for validating the efficacy of the selected compounds. In silico analysis and western blot together demonstrated that selected compound 10 in Cichorium intybus L. targeted Akt-1 in hepatocytes. Besides, compound 13 targeted both caspase-1 and Akt-1. These small compounds may ameliorate liver injury by acting on their targets, which are related to apoptosis or autophagy. The conclusions above may shed light on the complex molecular mechanisms of Cichorium intybus L. acting on hepatocytes and ameliorating liver injury.  相似文献   
9.
10.
Effective pharmacological neuroprotection is one of the most desired aims in modern medicine. We postulated that a combination of two clinically used drugs—nimodipine (L-Type voltage-gated calcium channel blocker) and amiloride (acid-sensing ion channel inhibitor)—might act synergistically in an experimental model of ischaemia, targeting the intracellular rise in calcium as a pathway in neuronal cell death. We used organotypic hippocampal slices of mice pups and a well-established regimen of oxygen-glucose deprivation (OGD) to assess a possible neuroprotective effect. Neither nimodipine (at 10 or 20 µM) alone or in combination with amiloride (at 100 µM) showed any amelioration. Dissolved at 2.0 Vol.% dimethyl-sulfoxide (DMSO), the combination of both components even increased cell damage (p = 0.0001), an effect not observed with amiloride alone. We conclude that neither amiloride nor nimodipine do offer neuroprotection in an in vitro ischaemia model. On a technical note, the use of DMSO should be carefully evaluated in neuroprotective experiments, since it possibly alters cell damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号