首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24659篇
  免费   2328篇
  国内免费   1838篇
电工技术   2224篇
综合类   1522篇
化学工业   10489篇
金属工艺   465篇
机械仪表   586篇
建筑科学   1123篇
矿业工程   829篇
能源动力   2660篇
轻工业   532篇
水利工程   722篇
石油天然气   2018篇
武器工业   47篇
无线电   201篇
一般工业技术   1078篇
冶金工业   747篇
原子能技术   2925篇
自动化技术   657篇
  2024年   58篇
  2023年   282篇
  2022年   477篇
  2021年   606篇
  2020年   694篇
  2019年   632篇
  2018年   609篇
  2017年   698篇
  2016年   836篇
  2015年   707篇
  2014年   1303篇
  2013年   2155篇
  2012年   1467篇
  2011年   1689篇
  2010年   1365篇
  2009年   1360篇
  2008年   1322篇
  2007年   1471篇
  2006年   1406篇
  2005年   1287篇
  2004年   1154篇
  2003年   1101篇
  2002年   974篇
  2001年   870篇
  2000年   659篇
  1999年   642篇
  1998年   497篇
  1997年   415篇
  1996年   362篇
  1995年   330篇
  1994年   247篇
  1993年   198篇
  1992年   169篇
  1991年   171篇
  1990年   140篇
  1989年   106篇
  1988年   68篇
  1987年   94篇
  1986年   44篇
  1985年   45篇
  1984年   29篇
  1983年   14篇
  1982年   8篇
  1981年   7篇
  1980年   5篇
  1979年   2篇
  1975年   1篇
  1974年   1篇
  1959年   33篇
  1951年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Hydrogen is currently receiving significant attention as an alternative energy resource, and among the various methods for producing hydrogen, methanol steam reforming (MSR) has attracted great attention because of its economy and practicality. Because the MSR reaction is inherently activated over catalytic materials, studies have focused on the development of noble metal-based catalysts and the improvement of existing catalysts with respect to performance and stability. However, less attention has been paid to the modification and development of innovative MSR reactors to improve their performance and efficiency. Therefore, in this review paper, we summarize the trends in the development of MSR reactor systems, including microreactors and membrane reactors, as well as the various structured catalyst materials appropriate for application in complex reactors. In addition, other engineering approaches to achieve highly efficient MSR reactors for the production of hydrogen are discussed.  相似文献   
3.
The effective and efficient utilization of low-calorific value (LCV) gases has gained increasing attention in scientific research and industrial fields. In this study, the combustion characteristics of three LCV gases in practical devices are analyzed by using a nonadiabatic perfectly stirred reactor model. The complete steady-state solution in the temperature-residence time parameter space is obtained with arc-length continuation. The stable operation region is quantified by the eigenvalue analysis. The transition of solution curves is quantified with heat loss coefficient. Five key system parameters are systematically investigated on their effects on stability limits. With the combustion performance being quantified by a combustion state index, a combustion state regulation method is proposed to find the optimal regulation path of system parameters. Active subspace method is further applied to shorten the regulation step by identifying the active direction. The proposed method and findings are useful for optimal regulation of burning LCV gases in industrial burners.  相似文献   
4.
ABSTRACT

It is important to perform neutron transport simulations with accurate nuclear data in the neutronics design of a fusion reactor. However, absolute values of large-angle scattering cross sections vary among nuclear data libraries even for well-examined nuclide of iron. Benchmark experiments focusing on large-angle scattering cross sections were thus performed to confirm the correctness of nuclear data libraries. The series benchmark experiments were performed at a DT neutron source facility, OKTAVIAN of Osaka University, Japan, by the unique experimental system established by the authors’ group, which can extract only the contribution of large-angle scattering reactions. This system consists of two shadow bars, target plate (iron), and neutron detector (niobium). Two types of shadow bars were used and four irradiations were conducted for one experiment, so that contribution of room-return neutrons was effectively removed and only large-angle scattering neutrons were extracted from the measured four Nb reaction rates. The obtained experimental results were compared with calculations for five nuclear data libraries including JENDL-4.0, JEFF.-3.3, FENDL-3.1, ENDF/B- VII, and recently released ENDF/B-VIII. It was found from the comparison that ENDF/B-VIII showed the best result, though ENDF/B-VII showed overestimation and others are in large underestimation at 14 MeV.  相似文献   
5.
Increasing the reaction temperature of the living cationic polymerization of isobutylene is crucial for industrial production due to the cost of refrigeration. The reaction temperature increase was achieved with an accelerated reaction rate using a flow reaction system. The polymerization conditions, including the flow reactor design, were based on the results of kinetic studies. Utilizing a milli‐scale flow reactor, polyisobutylene, which has a narrow molecular weight distribution, was obtained within a considerably short residence time at a high temperature. Furthermore, it was confirmed that the value of Mw/Mn correlates with the product of the Reynolds number and the angle of collision.  相似文献   
6.
In this study, a multi-tubular thermally coupled packed bed reactor in which simultaneous production of ammonia and methyl ethyl ketone (MEK) takes place is simulated. The simulation results are presented in two co-current and counter-current flow modes. Based on this new configuration, the released heat from the ammonia synthesis reaction as an extremely exothermic reaction in the inner tube is employed to supply the required heat for the endothermic 2-butanol dehydrogenation reaction in the outer tube. On the other hand, MEK and hydrogen are produced by the dehydrogenation reaction of 2-butanol in the endothermic side, and the produced hydrogen is used to supply a part of the ammonia synthesis feed in the exothermic side. Thus, 30.72% and 31.88% of the required hydrogen for the ammonia synthesis are provided by the dehydrogenation reaction in the co-current and counter-current configurations, respectively. Also, according to the thermal coupling, the required cooler and furnace for the ammonia synthesis and 2-butanol dehydrogenation conventional plants are eliminated, respectively. As a result, operational costs, energy consumption and furnace emissions are considerably decreased. Finally, a sensitivity analysis and optimization are applied to study the effect of the main process parameters variation on the system performance and obtain the minimum hydrogen make-up flow rate, respectively.  相似文献   
7.
A 2D computational fluid dynamics (Eulerian–Eulerian) multiphase flow model coupled with a population balance model (CFD-PBM) was implemented to investigate the fluidization structure in terms of entrance region in an industrial-scale gas phase fluidized bed reactor. The simulation results were compared with the industrial data, and good agreement was observed. Two cases including perforated distributor and complete sparger were applied to examine the flow structure through the bed. The parametric sensitivity analysis of time step, number of node, drag coefficient, and specularity coefficient was carried out. It was found that the results were more sensitive to the drag model. The results showed that the entrance configuration has significant effect on the flow structure. While the dead zones are created in both corners of the distributors, the perforated distributor generates more startup bubbles, heterogeneous flow field, and better gas–solid interaction above the entrance region due to jet formation.  相似文献   
8.
《Advanced Powder Technology》2020,31(12):4598-4618
Simulation based on discrete element method (DEM) coupled with computational fluid dynamics (CFD), coupled DEM-CFD, is a powerful tool for investigating the details of dense particle–fluid interaction problems such as in fluidized beds and pneumatic conveyers. The addition of a mechanical vibration to a system can drastically alter the particle and fluid flows; however, their detailed mechanisms are not well understood. In this study, a DEM-CFD model based on a non-inertial frame of reference is developed to achieve a better understanding of the influence of vibration in a vibrated fluidized bed. Because the high computational cost of DEM-CFD calculations is still a major problem, an upscaled coarse-graining model is also employed. To realize similar behaviors with enlarged model particles, non-dimensional parameters at the particle scale were deduced from the governing equations. The suitability and limitations of the proposed model were examined for a density segregation problem of a binary system. To reduce the computational costs, we show that the ratio between the bed width and model particle size can be reduced to a minimum value of 100; to obtain similar segregation behaviors, the ratio between the bed height and model particle size is considered unchanged.  相似文献   
9.
ABSTRACT

This paper presents an empirical assessment of four state-of-the-art risk-averse approaches to deal with the capacitated lot-sizing problem under stochastic demand. We analyse two mean-risk models based on the semideviation and on the conditional value-at-risk risk measures, and alternate first and second-order stochastic dominance approaches. The extensive computational experiments based on different instances characteristics and on a case-study suggest that CVaR exhibits a good trade-off between risk and performance, followed by the semideviation and first-order stochastic dominance approach. For all approaches, enforcing risk-aversion helps to reduce the cost-standard deviation substantially, which is usually accomplished via increasing production rates. Overall, we can say that very risk-averse decision-makers would be willing to pay an increased price to have a much less risky solution given by CVaR. In less risk-averse settings, though, semideviation and first-order stochastic dominance can be appealing alternatives to provide significantly more stable production planning costs with a marginal increase of the expected costs.  相似文献   
10.
Combination of X-ray Digital Industrial Radiography (DIR) and Particle Tracking Velocimetry (PTV) techniques for local liquid velocity measurement (VLL) has been newly developed and successfully applied for trickle bed reactor (TBR). The technique was validated against newly developed fiber optical probe technique. This work attempts to highlight the applicability of this newly developed technique on a liquid–solid packed bed reactor. In this work, liquid was represented by water and solids were represented by EPS beads. The EPS beads were chosen because of its low density property. Three superficial liquid velocities (VSL) were applied to the system. The experiment was replicated four times. The digital industrial radiography (DIR) consists of a complementary metal oxide semiconductor (CMOS) digital detector and X-ray source. Results of this work suggest that the technique has been successfully applied and comparable with previous work that has been done in the literature. It also suggests that there will be a maximum measurable interstitial liquid velocity when it travel inside the packed bed. The measured VLL can have a maximum range that is between 4 and 4.7 times that of its VSL. For VSL=0.42±±2%, the VLL-Max is in between 1.7 cm/s and 1.9 cm/s, VSL=0.84±±2%, the VLL-Max is in between 3.6 cm/s and 4.0 cm/s, and for VSL=1.11±±2%, the VLL-Max is in between 4.3 cm/s and 4.8 cm/s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号