首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7233篇
  免费   837篇
  国内免费   341篇
电工技术   165篇
综合类   457篇
化学工业   1869篇
金属工艺   370篇
机械仪表   340篇
建筑科学   179篇
矿业工程   83篇
能源动力   35篇
轻工业   1886篇
水利工程   26篇
石油天然气   101篇
武器工业   17篇
无线电   981篇
一般工业技术   1148篇
冶金工业   268篇
原子能技术   56篇
自动化技术   430篇
  2024年   33篇
  2023年   134篇
  2022年   337篇
  2021年   490篇
  2020年   324篇
  2019年   284篇
  2018年   254篇
  2017年   260篇
  2016年   291篇
  2015年   318篇
  2014年   411篇
  2013年   516篇
  2012年   543篇
  2011年   498篇
  2010年   392篇
  2009年   369篇
  2008年   284篇
  2007年   405篇
  2006年   361篇
  2005年   296篇
  2004年   256篇
  2003年   210篇
  2002年   192篇
  2001年   165篇
  2000年   132篇
  1999年   91篇
  1998年   88篇
  1997年   74篇
  1996年   61篇
  1995年   68篇
  1994年   47篇
  1993年   36篇
  1992年   36篇
  1991年   21篇
  1990年   28篇
  1989年   23篇
  1988年   13篇
  1987年   14篇
  1986年   13篇
  1985年   9篇
  1984年   5篇
  1983年   4篇
  1982年   9篇
  1981年   2篇
  1980年   2篇
  1963年   1篇
  1960年   1篇
  1958年   2篇
  1957年   1篇
  1955年   1篇
排序方式: 共有8411条查询结果,搜索用时 15 毫秒
1.
Mesenchymal stem cells (MSCs) are the main cell players in tissue repair and thanks to their self-renewal and multi-lineage differentiation capabilities, they gained significant attention as cell source for tissue engineering (TE) approaches aimed at restoring bone and cartilage defects. Despite significant progress, their therapeutic application remains debated: the TE construct often fails to completely restore the biomechanical properties of the native tissue, leading to poor clinical outcomes in the long term. Pulsed electromagnetic fields (PEMFs) are currently used as a safe and non-invasive treatment to enhance bone healing and to provide joint protection. PEMFs enhance both osteogenic and chondrogenic differentiation of MSCs. Here, we provide extensive review of the signaling pathways modulated by PEMFs during MSCs osteogenic and chondrogenic differentiation. Particular attention has been given to the PEMF-mediated activation of the adenosine signaling and their regulation of the inflammatory response as key player in TE approaches. Overall, the application of PEMFs in tissue repair is foreseen: (1) in vitro: to improve the functional and mechanical properties of the engineered construct; (2) in vivo: (i) to favor graft integration, (ii) to control the local inflammatory response, and (iii) to foster tissue repair from both implanted and resident MSCs cells.  相似文献   
2.
Jingdezhen is famous for its bluish white (Qingbai) porcelains of the Song Dynasty, and those decorated with iron spots are distinctive among them. Herein, iron spots on a bluish white porcelain were investigated using a series of microscopic and spectroscopic characterizations. We found the decreasing iron content from more than 8 wt% to about 2 wt% during the glaze color transition from rusty to brown and finally into green, which built a connection on the coloring mechanism of iron-rich crystallized glaze and celadon glaze. We identified the rare ε-Fe2O3, a promising magnetic material, in both the dark brown crystals and the triangular crystals in the rusty area, which is its first discovery among bluish white porcelains. Based on these findings, we discussed the coloring mechanism of iron-spot decoration along with the physical form of the iron oxide crystals, indicating the partially reducing atmosphere during firing process.  相似文献   
3.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
4.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
5.
6.
While exercise training (ET) is an efficient strategy to manage obesity, it is recommended with a dietary plan to maximize the antiobesity functions owing to a compensational increase in energy intake. Capsiate is a notable bioactive compound for managing obesity owing to its capacity to increase energy expenditure. We aimed to examine whether the antiobesity effects of ET can be further enhanced by capsiate intake (CI) and determine its effects on resting energy expenditure and metabolic molecules. Mice were randomly divided into four groups (n = 8 per group) and fed high-fat diet. Mild-intensity treadmill ET was conducted five times/week; capsiate (10 mg/kg) was orally administered daily. After 8 weeks, resting metabolic rate and metabolic molecules were analyzed. ET with CI additively reduced the abdominal fat rate by 18% and solely upregulated beta-3-adrenoceptors in adipose tissue (p = 0.013) but did not affect the metabolic molecules in skeletal muscles. Surprisingly, CI without ET significantly increased the abdominal fat rate (p = 0.001) and reduced energy expenditure by 9%. Therefore, capsiate could be a candidate compound for maximizing the antiobesity effects of ET by upregulating beta-3-adrenoceptors in adipose tissue, but CI without ET may not be beneficial in managing obesity.  相似文献   
7.
Industrialized white organic light-emitting diodes (OLEDs) currently require host-guest doping, a complicated process necessitating precise control of the guest concentration to get high efficiency and stability. Two doping-free, hybrid white OLEDs with fluorescent blue, and phosphorescent green and red emissive layers (EMLs) are reported in this work. An ultra-thin red phosphorescent EML was situated in a blue-emitting electron transport layer (ETL), while the ultra-thin green phosphorescent EML was placed either in the ETL (Device 1), or the hole transport layer (HTL) (Device 2). Device 2 exhibits higher efficiency and more stable spectrum due to the enhanced utilization of excitons by ultra-thin green EML at the exciton generation zone within the HTL. Values of current efficiency (CE), power efficiency (PE), and CRI obtained for the optimized hybrid white OLEDs fabricated through a doping-free process were of 23.2 cd/A, 20.5 lm/W and 82 at 1000 cd/m2, respectively.  相似文献   
8.
Palmitoleic acid has been classified as an insulin-sensitizing lipokine, but evidence for this from human studies has been inconsistent. We hypothesized that this is related to either the types of samples or conditions under which samples are collected. We measured plasma palmitoleic acid and total free fatty acids (FFA) using ultra-performance liquid chromatography in blood samples collected from 34 adults under a variety of conditions. We collected duplicate samples of adipose (n = 10), FFA (n = 9), and very low density lipoprotein triacylglycerol (VLDL-TAG) (n = 7) to measure the palmitoleic acid as a percentage of total fatty acids. We tested whether the percentage of palmitoleic acid was correlated with insulin resistance, as measured by homeostatic model of insulin resistance (HOMA-IR). Adipose stearoyl-coenzyme A desaturase 1 (SCD-1) protein was measured by capillary Western blotting. FFA-palmitoleic acid percentage increased as a function of total FFA and was greater (p < 0.005) in females than males. Adipose palmitoleic acid percentage was greater in females than males (p < 0.001), as was adipose SCD-1. Palmitoleic acid was greater in femoral fat than in abdominal fat in both females and males (p < 0.001), and correlated positively with HOMA-IR only in females. The test–retest reliability values for percentage palmitoleic acid were 7 ± 10% for adipose, 24 ± 26% for VLDL, and 53 ± 31% for FFA. Because FFA-palmitoleic acid percentage varies as a function of total FFA, investigators should re-evaluate how palmitoleic acid data is presented. The positive relationship between adipose palmitoleic acid and HOMA-IR in females suggests that it is not a potent insulin-sensitizing lipokine in humans.  相似文献   
9.
The extracellular matrix (ECM) is a macromolecular network that can provide biochemical and structural support for cell adhesion and formation. It regulates cell behavior by influencing biochemical and physical cues. It is a dynamic structure whose components are modified, degraded, or deposited during connective tissue development, giving tissues strength and structural integrity. The physical properties of the natural ECM environment control the design of naturally or synthetically derived biomaterials to guide cell function in tissue engineering. Tissue engineering is an important field that explores physical cues of the ECM to produce new viable tissue for medical applications, such as in organ transplant and organ recovery. Understanding how the ECM exerts physical effects on cell behavior, when cells are seeded in synthetic ECM scaffolds, is of utmost importance. Herein we review recent findings in this area that report on cell behaviors in a variety of ECMs with different physical properties, i.e., topology, geometry, dimensionality, stiffness, and tension.  相似文献   
10.
In this research, a bimodal nanoporous Baghdadite (NB) (Ca3ZrSi2O9) was prepared by a modified sol-gel method using P123 as a surfactant. The effects of P123's contents on the structural and textural properties as well as the drug delivery behavior of NB were assessed in vitro. The usage of P123 offered a new route for the synthesis of NB. The synthesized NB samples with different amounts of P123 were studied through X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), N2 adsorption-desorption, field emission scanning electron microscopy (FESEM) equipped with energy-dispersive X-ray analysis spectroscopy (EDAX) and transmission electron microscopy (TEM). The results showed that a single-phase Baghdadite was obtained by this new method at the calcination temperature of 800?°C. It was found that an increase in P123's content up to 0.025?mol changed the morphology of NB samples from mountain-like to needle-like. The potential application of NB samples as drug delivery agents was assessed by estimating their release properties up to 240?h. This research revealed that the synthesized Baghdadite could be used as a potential nanoporous carrier with controlled release capability in bone tissue regeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号