首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   0篇
  国内免费   2篇
化学工业   40篇
金属工艺   29篇
机械仪表   3篇
能源动力   2篇
轻工业   1篇
一般工业技术   36篇
冶金工业   11篇
自动化技术   2篇
  2018年   1篇
  2013年   118篇
  2007年   3篇
  2002年   1篇
  1998年   1篇
排序方式: 共有124条查询结果,搜索用时 15 毫秒
1.
Abstract

In this study, an etching technique to detect the localised plastic deformation behaviour in a low carbon steel was developed. With this technique, etching with Fry solution under ultrasonic vibration was carried out on samples plastically deformed and then heated at 550°C for a certain period of time. The plastic zone was revealed by different degrees of etching in the plastically deformed and non-deformed regions; the plastic zone was found to be only slightly etched, whereas the other region was deeply etched. From the surface offset after etching, the deformation zone was found to be observable even at low magnification, such as 10 times. As the heating duration increased, the plastic zone became clearer. The mechanism for such an etching reaction is discussed on the basis of electrochemical analysis.  相似文献   
2.
Abstract

In this paper, fundamental concepts of ultrasonics and characteristics of distinctive microstructures have been used to simply explain the effect of microstructure on the attenuation mechanism of ultrasonic waves in carbon steels. In addition, it has been shown that application of the second medium hardness instead of the bulk hardness is more appropriate to correlate the sound velocity and the microstructure.  相似文献   
3.
《粉末冶金学》2013,56(1):99-104
Abstract

This paper reviews the mechanical and microstructural characteristics of hypoeutectoid steels obtained by powder technology, in which various carbonaceous petroleum products provide the carbon constituent. These steels are compared with others of similar composition obtained from graphite.  相似文献   
4.
Abstract

The high solidification cracking susceptibility of low C steel weld metals was investigated using pure Fe model alloys containing 0–0·23%C, 0–5%Ni and 0–0·0144%B. In addition, a few Fe–C–Ni ternary alloys were also tested. Solidification cracking susceptibility was tested using longitudinal varestraint and transvarestraint tests. Cracking was evaluated using crack length and brittleness temperature range criteria. The Fe–C alloys showed high cracking tendency in two regimes, the first in the ultralow carbon range of 0·03–0·05%C and the second in a narrow band close to 0·1%C. The cracking was much more than that attributable to solute segregation. In Fe–Ni and Fe–B alloys, cracking was a function of alloy content. Solidification cracking due to C and Ni was higher in the ferritic mode of solidification compared to the austenitic, unlike in stainless steels, where the ferritic mode provides high resistance to cracking. In Fe-C-Ni ternary alloys, cracking could be better related to composition in terms of a variable coefficient for C in the Ni equivalent. In the vicinity of 0·1%C, cracking was attributable to shrinkage due to solid state transformation from δ to γ in the brittle temperature range, and is similar to that occurring during continuous casting of steel. However, this factor did not appear to play a role in cracking in the ultralow C range of 0·03–0·05%C.  相似文献   
5.
Abstract

The poor tribological properties of zirconium limit its application, particularly its use in valves in the nuclear industry. Following up on a successful program to case harden titanium, the authors applied the same techniques to zirconium. Although the two metals are closely related, the diffusing species used for titanium were not found to be suitable for zirconium because of cracking in the sub-ceramic diffusion zone. A modified approach using hydrogen to improve the ductility of the layer successfully reduced its hardness, but not its propensity to cracking.  相似文献   
6.
Preparative Scale Supercritical Fluid Chromatography is emerging as a powerful alternative to HPLC for the purification and separation of complex chemical reaction mixtures. Advantages include greatly reduced solvent usage (and thus lower cost and environmental impact), higher throughput, and in some cases higher resolution. While there are commercially available prep SFC instruments, none currently offer all the features desired by many medicinal chemists engaged in the drug discovery process. These include: the ability to collect an unlimited number of fractions per sample with high recovery and negligible carryover, fully automated capacity to collect several hundred fractions, and the ability to collect fractions into the same disposable test tubes and racks which are already employed in HPLC. This article describes the customization of a preparatory scale SFC system purchased from Berger Instruments, Inc., Newark, DE. (a subsidiary Mettler-Toledo International, Inc., of Greifensee, Switzerland) in order to provide these capabilities.  相似文献   
7.
The effect of surface chemistry and rugosity on the interfacial adhesion between Bisphenol-A Polycarbonate and a carbon fiber surface subjected to surface treatment to add surface oxygen groups was investigated. The surface oxygen content of PAN based intermediate modulus IM7 carbon fibers was varied by an oxidative surface treatment. The oxygen content of the carbon fiber surface increased from 4 to 22% by changing the degree of surface treatment from 0 to 400% of nominal commercial surface treatment levels. The oxidative surface treatment also causes an increase in surface roughness by creating pores and fissures in the surface by removing carbon from the regions between the graphite crystallites. To decouple the effects of surface roughness and the surface oxides on the interfacial adhesion, the oxidized fiber surface was passivated via hydrogenation at elevated temperature. Thermal hydrogenation removes the oxides on the surface without significantly altering the surface topography. The results of interfacial adhesion tests indicate that an increase in the oxygen content of the fiber does not increase the fiber-matrix interfacial adhesion significantly. Comparing adhesion results between oxidized and hydrogen passivated fibers shows that the effect of the surface roughness on the interfacial adhesion is also insignificant. Overall, dispersive interactions alone appear to be the primary factor in adhesion of carbon fibers to thermoplastic matrices in composites.  相似文献   
8.
Amorphous silicon-containing diamond-like carbon (Si-DLC) coatings were deposited by Ar+ ion beam-assisted physical vapor deposition of tetraphenyl-tetramethyl-trisiloxane (704 Dow Corning diffusion pump oil) on AISI 4340 low alloy and 440° C high alloy steel specimens, as well as on thin wafers of the same compositions, in order to evaluate residual stresses within the coatings. During annealing in an argon atmosphere at 200°C for up to 30 min, the residual compressive stress, attributed to hydrogen entrapment during deposition, gradually changed to tensile due to loss of hydrogen, and the rate of stress increase decreased with increasing annealing time. The cohesion and adhesion failure loads of the coatings decreased with annealing time, as did the friction coefficient between the coating and a diamond stylus. The specific wear rate, measured by pin-on-disk tribometry, increased with annealing time. These properties are affected not only by the change in residual stress state during annealing, but most likely also by devitrification and the accompanying grain growth. If these effects are neglected, then the properties may be correlated directly with residual stresses in the coating.  相似文献   
9.
For bulk processing of carbon nanotubes, an important first step in adhesion to the nanotubes is often liquid-phase functionalization through chemical oxidation with acids (e.g., nitric and sulfuric), peroxides and/or potassium permanganate. In comparison, gas-phase photo-oxidation can be an alternative to introduce oxygenated functional groups on the surfaces of carbon nanotubes without the generation of liquid waste. In the present study, vacuum UV photo-oxidation of multi-walled carbon nanotube (MWNT) paper was investigated downstream from an Ar microwave plasma. X-ray Photoelectron Spectroscopy (XPS) was used to detect the carbon- and oxygen-containing functional groups in the top 2–5 nm of the sample's surface. The current results are compared to previous investigations using MWNT powder and single-walled carbon nanotube (SWNT) paper showing decreased levels of oxidation in MWNT samples.  相似文献   
10.
Abstract

The passivation characteristics of carbon steel surfaces at 473 K in the presence of certain chelating agents such as NTA DTP A, and HEDTA are described. The relative impacts of these chelants on the passivation process are evaluated by using base metal loss, soluble and insoluble iron concentrations in the mediums SEM studies of the topography of the surface coatings, and electrochemical investigations of the protection afforded by the oxide coating. The results have been compared with the passivation behaviour obtained under simple alkaline pH (LiOH) treatment (without chelating agents) and that previously obtained in the presence of EDTA. It is found that at 473 K, the presence of these complexing agents greatly increases the base metal loss, although a lower base metal loss is observed with LiOH. but the oxide film formed is more protective than the one formed under LiOR or EDTA treatments. The morphology of the coatings formed under complexing conditions has revealed highly developed crystallite faces on the outer surface layer. It is concluded that at 473 K passivation by LiOR is preferred to that given by the chelants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号