首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15243篇
  免费   446篇
  国内免费   385篇
电工技术   263篇
综合类   448篇
化学工业   3310篇
金属工艺   1544篇
机械仪表   774篇
建筑科学   1056篇
矿业工程   745篇
能源动力   1055篇
轻工业   365篇
水利工程   40篇
石油天然气   130篇
武器工业   66篇
无线电   864篇
一般工业技术   2934篇
冶金工业   1048篇
原子能技术   96篇
自动化技术   1336篇
  2024年   10篇
  2023年   168篇
  2022年   264篇
  2021年   315篇
  2020年   318篇
  2019年   281篇
  2018年   317篇
  2017年   367篇
  2016年   310篇
  2015年   352篇
  2014年   733篇
  2013年   944篇
  2012年   852篇
  2011年   1331篇
  2010年   990篇
  2009年   1001篇
  2008年   973篇
  2007年   921篇
  2006年   802篇
  2005年   694篇
  2004年   671篇
  2003年   547篇
  2002年   432篇
  2001年   346篇
  2000年   302篇
  1999年   334篇
  1998年   320篇
  1997年   230篇
  1996年   165篇
  1995年   162篇
  1994年   135篇
  1993年   112篇
  1992年   97篇
  1991年   66篇
  1990年   44篇
  1989年   51篇
  1988年   28篇
  1987年   18篇
  1986年   12篇
  1985年   10篇
  1984年   12篇
  1983年   13篇
  1982年   7篇
  1981年   3篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   5篇
  1974年   1篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Development of efficient, low cost and multifunctional electrocatalysts for water splitting to harvest hydrogen fuels is a challenging task, but the combination of carbon materials with transition metal-based compounds is providing a unique and attractive strategy. Herein, composite systems based on cobalt ferrite oxide-reduced graphene oxide (Co2FeO4) @(rGO) using simultaneous hydrothermal and chemical reduction methods have been prepared. The proposed study eliminates one step associated with the conversion of GO into rGO as it uses direct GO during the synthesis of cobalt ferrite oxide, consequently rGO based hybrid system is achieved in-situ significantly, the optimized Co2FeO4@rGO composite has revealed an outstanding multifunctional applications related to both oxygen evolution reaction (OER) and hydrogen counterpart (HER). Various metal oxidation states and oxygen vacancies at the surface of Co2FeO4@rGO composites guided the multifunctional surface properties. The optimized Co2FeO4@rGO composite presents excellent multifunctional properties with onset potential of 0.60 V for ORR, an overpotential of 240 mV at a 20 mAcm?2 for OER and 320 mV at a 10 mAcm?2 for HER respectively. Results revealed that these multifunctional properties of the optimized Co2FeO4@ rGO composite are associated with high electrical conductivity, high density of active sites, crystal defects, oxygen vacancies, and favorable electronic structure arisinng from the substitution of Fe for Co atoms in binary spinel oxide phase. These surface features synergistically uplifted the electrocatalytic properties of Co2FeO4@rGO composites. The multifunctional properties of the Co2FeO4@ rGO composite could be of high interest for its use in a wide range of applications in sustainable and renewable energy fields.  相似文献   
2.
《Ceramics International》2021,47(22):31319-31328
Manufacturing lightweight aggregate (LWA) at high temperature is an effective way to immobilize heavy metals in solid waste. This work investigated the performance and solidification mechanism of LWA prepared from copper contaminated soil. The volume expansion of LWA could reach a maximum of 28%, and its lowest density accounted of 1.5 g/cm3, which met the standard requirements. Optical microscope and micro-CT test illustrated that the addition of Cu leaded to obvious phase separation in LWA. The Cu leaching result of LWA first increased and then dropped with the temperature. The XRD test found that the main formation phase of Cu in LWA were t-CuFe2O4 and amorphous phase that they had different acid resistance ability. XPS revealed that the main cause of the agglomeration of liquid phase in LWA was the chain broken reaction between Cu and Si–O tetrahedron. SEM-EDS results showed that the distribution of Cu and Si had a strong correlation, which meant that Cu mostly formed amorphous phase. This work showed the uniqueness of Cu in the high temperature immobilization and pointed out the best immobilization target phase.  相似文献   
3.
《Ceramics International》2021,47(18):25505-25513
Herein, (Co0.5Ni0.5)Cr0.3Fe1.7O4/graphene oxide nanocomposites were fabricated by ultrasonication technique, using pure spinel ferrite and graphene oxide synthesized by sol-gel method and modified Hummers' method, respectively. The effect of graphene incorporation with ferrite nanoparticles was studied by X-ray diffraction (XRD), electrical and dielectric measurements. XRD analysis revealed the spinel phase for the ferrite sample and confirmed the formation of graphene oxide. The crystallite size was found in the range of 3743 nm and the porosity increased with the increase in the concentration of graphene oxide in the composites. The DC electrical resistivity of spinel ferrite was found equal to 3.83×109 Ω.cm and it substantially decreased with the increase in the percentage of graphene oxide at room temperature. The real and imaginary part of relative permittivity followed the Maxwell-Wagner type of interfacial polarization. AC conductivity confirmed the conduction by hopping mechanism and increased on increasing the GO content. The coupling of magnetic ferrite with graphene oxide tunes the magneto-electrical properties for potential applications at high frequencies.  相似文献   
4.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
5.
In this study, seven different filler materials in different proportions were added to a Ba-Ca-Si glass matrix “H” to investigate new sealant with higher thermal expansion coefficient (CTE) value and good sealing performance for application in oxygen transport membrane (OTM). SrTi0.75Fe0.25O3-δ (STF25) was used as an OTM, and the sealing partners were ferritic steel Aluchrom and pre-oxidized Aluchrom. Compatibility tests were carried out to investigate the feasibility of the composites. Higher CTE values were found in dilatometer tests on composite samples by adding 40 wt% Ag (HAg40) and 30 wt% Ni-Cr (HNC30). Gas-tightness measurements of sandwiched samples produced appropriate helium leakage rates in the range of 10?6 mbar·l·s?1. Sealing behaviour of sealants HAg40 and HNC30 were investigated by joining STF25 and as-delivered/pre-oxidized Aluchrom together. Scanning electron microscopy (SEM) on cross-sections of the joints revealed a homogeneous microstructure and good adherence of the glass sealants to support metals and STF25.  相似文献   
6.
This study presents systematic packaging design tools integrating functional and environmental consequences on product life cycle. To design packaging for sustainability, the trade-offs between functional and environmental aspects of packaging throughout the product life cycle should be considered. However, it is difficult for packaging designers to understand the overall trade-offs because the extent of the design consequences on the entire life cycle of packaging and its contents is unclear. We developed two tools for packaging design: the Life Cycle Association Matrix (LCAM) and the Function Network Diagram (FND). The following three steps, based on literature reviews and interviews with industrial experts, were applied. Firstly, we listed the product functions and design variables related to the functions as the attributes allocated to the product life cycle. Secondly, the attributes were connected appropriately based on causal relationships. Lastly, we identified the factors to support decision making in the packaging design procedure. As a result, the LCAM depicts the design consequences on the life cycle, and the FND determines the stakeholders affected by the design consequences. Two case studies were demonstrated to analyze the trade-offs by using our tools. In the case studies, a liquid laundry detergent bottle and a milk carton were redesigned. The tools identified the design consequences and stakeholders affected by the redesign of the usability and protective function for the detergent and milk cases, respectively. The results showed the significance of understanding the design consequences on the product life cycle by integrating the functional and environmental aspects.  相似文献   
7.
《Ceramics International》2015,41(6):7478-7488
Gas sensing characteristics of one-electrode sensors based on the In2O3 ceramics doped by gallium and phosphorus have been discussed. In2O3-based ceramic was prepared by sol–gel technology. Ozone, CO, CH4 and H2 were used as tested gases. The doping concentration effect on the sensor parameters such as magnitude of response, operating temperature, response and recovery times, sensitivity to the air humidity, and selectivity have been analyzed. It was shown that In2O3 doping by Ga and P could be used for the sensor performance optimization. It was assumed that the appearance of the second phase (InPO4 and Ga2O3) and the change of structural parameters, taking place during doping process, were the main factors controlling the change of operating characteristics in In2O3:P and In2O3:Ga-based sensors.  相似文献   
8.
《Ceramics International》2021,47(19):26598-26619
The growing demands for Li-ion batteries (LIBs) in the electrification revolution, require the development of advanced electrode materials. Recently, intercalating titanium niobium oxide (TNO) anode materials with the general formula of TiNbxO2+2.5x have received lots of attention as an alternative to graphite and Li4Ti5O12 commercial anodes. The desirability of this family of compounds stems from their high theoretical capacities (377–402 mAh/g), high safety, high working voltage, excellent cycling stability, and significant pseudocapacitive behavior. However, the rate performance of TNO-based anodes is poor owing to their low electronic and ionic conductivities. TNO-based composites generally are prepared with two aims of enhancing the conductivity of TNO and achieving a synergic effect between the TNO and the other component of the composite. Compositing with carbon matrices, such as graphene and carbon nanotubes (CNTs) are the most studied strategy for improving the conductivity of TNO and optimizing its high-rate performance. Also, for obtaining anode materials with high capacity and high long-term stability, the composites of TNO with transition metal dichalcogenides (TMDs) materials were proposed in previous literature. In this work, a comprehensive review of the TNO-based composites as the anodes for LIBs is presented which summarizes in detail the main recent literature from their synthesis procedure, optimum synthesis parameters, and the obtained morphology/structure to their electrochemical performance as the LIBs anode. Finally, the research gaps and the future perspective are proposed.  相似文献   
9.
《Ceramics International》2022,48(17):24840-24849
In this paper, Gd3+ doped V2O5/Ti3C2Tx MXene (GVO/MX) hierarchical architectures have been synthesized by wet chemical approach. As prepared GVO/MX composite, along undoped VO and unsupported GVO were well characterized by XRD, FESEM, EDX, FT-IR and BET techniques. Electrochemical performance of VO, GVO and GVO/MX was evaluated by CV, GCD and EIS measurements. Among the three electrodes, GVO/MX composite exhibited highest electrochemical activity with the optimum specific capacitance of 1024 Fg-1 at 10 mVs?1. The specific capacitance of GVO/MX was ~1.7 and ~3 times higher than unsupported GVO (585 Fg-1) and VO (326 Fg-1), respectively. The cyclic life of GVO/MX with capacitance retention 96.12% was observed at 60 mVs?1. EIS measurements showed reduction in electrochemical impedance for GVO/MX as compared to GVO and VO. The corresponding impedance values of Rct and Resr for GVO/MX were calculated as 18 Ω and 1.8 Ω, respectively. The superior capacitive ability of GVO/MX can be ascribed to its unique morphology, short diffusion path and high surface area of fabricated composite. Considering it, the present work provides a feasible strategy to fabricate highly effective electrode materials for next generation energy storage devices.  相似文献   
10.
《Ceramics International》2022,48(24):36401-36409
Catalytic supercritical water oxidation (SCWO) of an organophosphate flame retardant, namely tri-n-butyl phosphate (TNBP) was studied. Firstly, copper oxide nanoparticles (NPs) were synthesized in SCW and their properties were characterized by various analyses. Afterwards, their catalytic performance was investigated under different conditions including reaction temperature (400–500 °C), TNBP volume percentage in the feed (1–4%), oxidant ratio (0–2) and reaction time (50–150 min) based on response surface methodology (RSM). The synthesized CuO NPs had an average particle size of 30 nm with a narrow distribution. According to RSM analysis, the reaction temperature and time are the most significant factors; whereas, the impact of the other factors, especially TNBP volume percentage in the feed, was found to be negligible. Overall, excellent performance was achieved under optimal conditions found by the RSM, which was reaction temperature of 500 °C, TNBP volume percentage of 4%, oxidant ratio of 1.5, and reaction time of 90 min. The TOC removal efficiency as an indicator of TNBP degradation was about 99%. Finally, in vitro cell viability assays for the cytotoxicity evaluation of fresh and SCW-treated solution were applied. The results of MTT showed that SCWO converts TNBP into by-product that did not induce any cytotoxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号