首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   832篇
  免费   7篇
  国内免费   11篇
电工技术   48篇
综合类   15篇
化学工业   300篇
金属工艺   45篇
机械仪表   22篇
矿业工程   9篇
能源动力   300篇
轻工业   12篇
石油天然气   1篇
无线电   19篇
一般工业技术   43篇
冶金工业   23篇
原子能技术   3篇
自动化技术   10篇
  2024年   1篇
  2023年   12篇
  2022年   18篇
  2021年   28篇
  2020年   24篇
  2019年   26篇
  2018年   24篇
  2017年   23篇
  2016年   15篇
  2015年   14篇
  2014年   25篇
  2013年   46篇
  2012年   28篇
  2011年   99篇
  2010年   71篇
  2009年   72篇
  2008年   53篇
  2007年   56篇
  2006年   37篇
  2005年   23篇
  2004年   28篇
  2003年   11篇
  2002年   12篇
  2001年   11篇
  2000年   11篇
  1999年   8篇
  1998年   11篇
  1997年   2篇
  1996年   11篇
  1995年   9篇
  1994年   9篇
  1993年   8篇
  1992年   8篇
  1991年   9篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有850条查询结果,搜索用时 46 毫秒
1.
《Ceramics International》2022,48(8):11304-11312
Li13.9Sr0.1Zn(GeO4+δ)4 (LSZG) materials can exhibit proton conduction by Li+/H+ ion exchange in hydrogen atmosphere. It can be used in solid oxide fuel cells (SOFCs) as an electrolyte. In this study, In3+ doped LSZG powders are synthesized by sol-gel method. X-ray diffraction, scanning electron microscopy, thermal gravimetric analyzer, and electrochemical impedance spectroscopy are used to investigate the effects of In doping on LSZG. All Li13.9-xInxSr0.1Zn(GeO4+δ)4 (LISZG, 0 ≤ x ≤ 0.3) ceramics exhibit the same phase with LSZG. The dopant of In promotes the sintering activity and Li+/H+ ion exchange rate of LSZG. The optimum doping of In is x = 0.2. At 600 °C, Li13.7In0.2Sr0.1Zn(GeO4+δ)4 (0.2LISZG) shows a proton conductivity of 0.094 S/cm under 0.9 V direct current bias voltage. In addition, the single cell based on 0.2LISZG electrolyte is prepared, and it has been demonstrated that the practical utilization of 0.2LISZG in IT-SOFCs is feasible.  相似文献   
2.
A (time-dependent) model for an electrochemical cell, comprising a dilute binary electrolytic solution between two flat electrodes, is formulated. The method of matched asymptotic expansions (taking the ratio of the Debye length to the cell width as the small asymptotic parameter) is used to derive simplified models of the cell in two distinguished limits and to systematically derive the Butler–Volmer boundary conditions. The first limit corresponds to a diffusion-limited reaction and the second to a capacitance-limited reaction. Additionally, for sufficiently small current flow/large diffusion, a simplified (lumped-parameter) model is derived which describes the long-time behaviour of the cell as the electrolyte is depleted. The limitations of the dilute model are identified, namely that for sufficiently large half-electrode potentials it predicts unfeasibly large concentrations of the ion species in the immediate vicinity of the electrodes. This motivates the formulation of a second model, for a concentrated electrolyte. Matched asymptotic analyses of this new model are conducted, in distinguished limits corresponding to a diffusion-limited reaction and a capacitance-limited reaction. These lead to simplified models in both of which a system of PDEs, in the outer region (the bulk of the electrolyte), matches to systems of ODEs, in inner regions about the electrodes. Example (steady-state) numerical solutions of the inner equations are presented.  相似文献   
3.
研究了InP样品和In1-xGaxAsyP1-y液相外延片在300~800nm范围内的电调制反射光谱。利用Apsnes三点法计算了临界点能量、增宽因子和自旋轨道分裂值。通过实验曲线与理论公式的拟合,确定了临界点能维数及相位因子。并且间接提供了被测In1-xGaxAsyP1-y四元合金的组份值及其它临界点能量值E0和E2。  相似文献   
4.
The development of an inorganic electrochemical stable solid-state electrolyte is essentially responsible for future state-of-the-art all-solid-state lithium batteries (ASSLBs). Because of their advantages in safety, working temperature, high energy density, and packaging, ASSLBs can develop an ideal energy storage system for modern electric vehicles (EVs). A solid electrolyte (SE) model must have an economical synthesis approach, exhibit electrochemical and chemical stability, high ionic conductivity, and low interfacial resistance. Owing to its highest conductivity of 17 mS·cm-1, and deformability, the sulfide-based Li7P3S11 solid electrolyte is a promising contender for the high-performance bulk type of ASSLBs. Herein, we present a current glimpse of the progress of synthetic procedures, structural aspects, and ionic conductivity improvement strategies. Structural elucidation and mechanistic approaches have been extensively discussed by using various characterization techniques. The chemical stability of Li7P3S11 could be enhanced via oxide doping, and hard and soft acid/base (HSAB) concepts are also discussed. The issues to be undertaken for designing the ideal solid electrolytes, interfacial challenges, and high energy density have been discoursed. This review aims to provide a bird's eye view of the recent development of Li7P3S11-based solid-state electrolyte applications and explore the strategies for designing new solid electrolytes with a target-oriented approach to enhance the efficiency of high energy density all-solid-state lithium batteries.  相似文献   
5.
Effects of the electrolyte of DSCs on impedance spectra were evaluated by changing concentration of redox couple, viscosity, and additives to electrolyte. The relation with current-voltage characteristics (I-V characteristics) was investigated. In many cases, the impedance component attributed to charge transfer at TiO2|electrolyte interface demonstrated strong relation with the I-V characteristics. The recombination of electrons in TiO2 with I3 in electrolyte was a key factor in determining performance of DSCs. To evaluate the effect of I3, diffusion-limiting current in the electrolyte for various viscosities was evaluated by cyclic voltammetry. When the short circuit current (SCC) was almost equal to the diffusion-limiting current, strong influence of the diffusion coefficient on the impedance spectra was observed: impedance arcs were enlarged as the diffusion coefficient was decreased. On the other hand, when the diffusion-limiting current was larger than the SCC, photo-excitation and electron injection processes became dominating factors in the DSCs performance. The SCC was regulated by the charge recombination process at TiO2|electrolyte interface, and thus the impedance component ω3 was related to the performance in such condition.  相似文献   
6.
The sorption of water–methanol mixtures containing a dissolved chloride salt in a Nafion 117 membrane, and their transport through the membrane under the driving force of a pressure gradient, have been studied. Both type of experiments was performed by using five different salts: lithium chloride, sodium chloride, cesium chloride, magnesium chloride and calcium chloride. It was observed that both the permeation flow through the membrane and the membrane swelling increase significantly with the methanol content of the solutions. These facts are attributed to the increase in wet membrane porosity, which brings about the increase of the mobility of solvents in the membrane, besides the increase of the mobility of the polymer pendant chains. In contrast, the influence of the type of electrolyte on the membrane porosity and permeability is not very important, with the exception of the CsCl solutions, which is probably due to the small hydration ability of the Cs+ ion.  相似文献   
7.
通过对不同电解液成分和浓度的选取,制备氧化和着色兼容的微弧氧化膜。不同种类的电解液所得到的微弧氧化膜层颜色也不同,同种体系中的主要成分浓度的不同是影响微弧氧化膜颜色和生成速率的原因之一。  相似文献   
8.
从电解质溶液的经典理论、半经验模型和统计力学3方面综述了电解质溶液热力学性质的研究进展,并对各种理论和模型在理论与实践方面的局限性作了相关评述。从分子、离子角度对电解质溶液的热力学性质进行研究比较,探讨了其宏观热力学性质与微观结构的相关性。展望了电解质溶液热力学理论近期研究的热点和未来的发展方向。  相似文献   
9.
Corrosion resistant treated metal bipolar plates with higher rigidity and electrical conductivity than graphite were developed and tested for PEM fuel cell applications. Six replicas of single cells were used three of which were made of graphite composites bipolar plates and the other three of the treated metallic plates. A Membrane Electrode Assembly (MEA) with 5.55 cm2 active electrode areas, 0.3 mg cm–2 Pt loading and Nafion membrane 115 was fitted to each cell and operated under identical conditions. The experimental testing was conducted at room temperature (20 °C). The average value of the data obtained for the three graphite cells was plotted. Similarly, the average value of the data obtained for the three treated metal cells was plotted on the same graph for comparison. Generally, the treated metal bipolar plate provided at least 12% saving in hydrogen consumption in comparison to graphite. This is attributed to the lower bulk and surface contact resistance of the metal used in this study in relation to graphite. The results of lifetime testing, conducted at room temperature under variable loading showed no indication of power degradation due to metal corrosion for at least 1500 hours.  相似文献   
10.
Si3N4结合SiC抗电解质侵蚀性能的研究状况   总被引:1,自引:0,他引:1  
本文对国内外进行的氮化硅结合碳化硅耐火材料抗电解质侵蚀性能的研究做了较为全面的叙述,在已有研究的基础上对材料侵蚀机理和过程进行了总结,并对今后的研究方向提出了建议。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号