首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8232篇
  免费   568篇
  国内免费   398篇
电工技术   70篇
综合类   428篇
化学工业   1732篇
金属工艺   1642篇
机械仪表   529篇
建筑科学   566篇
矿业工程   185篇
能源动力   111篇
轻工业   74篇
水利工程   105篇
石油天然气   254篇
武器工业   87篇
无线电   96篇
一般工业技术   2347篇
冶金工业   748篇
原子能技术   87篇
自动化技术   137篇
  2024年   19篇
  2023年   130篇
  2022年   166篇
  2021年   189篇
  2020年   217篇
  2019年   229篇
  2018年   217篇
  2017年   256篇
  2016年   299篇
  2015年   378篇
  2014年   363篇
  2013年   434篇
  2012年   484篇
  2011年   566篇
  2010年   421篇
  2009年   425篇
  2008年   436篇
  2007年   451篇
  2006年   471篇
  2005年   401篇
  2004年   335篇
  2003年   313篇
  2002年   295篇
  2001年   274篇
  2000年   222篇
  1999年   194篇
  1998年   163篇
  1997年   145篇
  1996年   119篇
  1995年   123篇
  1994年   92篇
  1993年   68篇
  1992年   63篇
  1991年   63篇
  1990年   71篇
  1989年   43篇
  1988年   26篇
  1987年   11篇
  1986年   10篇
  1985年   5篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1959年   1篇
排序方式: 共有9198条查询结果,搜索用时 31 毫秒
1.
B4C-TiB2 ceramics (TiB2 ranging 5~70 vol%) with Mo-Co-WC as the sintering additive were prepared by spark plasma sintering. In comparison with B4C-TiB2 without additive, the enhanced densification was evident in the sintered specimen with Mo-Co-WC additive. Core-rim structured grain was observed around TiB2 grains. The interface of the rim between TiB2 and B4C phases demonstrated different feature: the inner borderline of the rim exhibited a smooth feature, whereas a sharp curved grain boundary was observed between the rim and the B4C grain. The formation mechanism is discussed: the epitaxial growth of (Ti,Mo,W)B2 rim around the TiB2 core may occur as a result of the solid solution and dissolution-precipitation between TiB2 phase and the sintering additive. It was revealed that the fracture toughness increased as the content of TiB2 content increased, alongside the decreased hardness. B4C-30 vol% TiB2 specimen demonstrated the optimal combination of mechanical properties, reaching Vickers hardness of 24.3 GPa and fracture toughness of 3.33 MPa·m1/2.  相似文献   
2.
《Ceramics International》2021,47(23):33223-33231
The effects of pH of the reaction solution and the concentration of phosphoric acid on the crystal growth behavior of LaPO4 crystallites were investigated and the mechanical properties of rare-earth phosphates were compared. As a result, the concentration of phosphoric acid of 10% was beneficial to the crystal growth of LaPO4 nanocrystalline. When the pH value of the reaction solution was 2, the size of LaPO4 crystallites increased gradually with the increasing reaction temperature, and the smallest crystallite size of 43.27 nm was obtained after heat-treatment at 1000 °C. Simultaneously, the activation energy for crystal growth of LaPO4 nanocrystalline was relatively lower (26.82 kJ mol−1). With the decreasing radii of rare-earth ions, the hardness, Young's modulus and fracture toughness of the bulk rare-earth phosphates exhibited a reduced tendency, resulted from the increase of porosity under the same preparation process.  相似文献   
3.
The onset of hybrid alumina-based composites, which combines two or more nano-particles within the alumina matrix has already shown promising improvements in the matrix material. However, variations in mechanical properties including the optimum compositions that give improved properties faced with the development of alumina-based composites require further studies to understand the underlying mechanisms and synergistic effects of the nano-particle additions on the alumina matrix. In the current study, the structure and properties of Al?O?-graphene (0.5 wt%) and Al?O?–ZrO? (4 wt% and 10 wt%) composites fabricated via hot-pressing was studied as a baseline for multiple combinations. Even though the addition of 10 wt%ZrO? resulted in a 23% reduction in the grain size of the alumina matrix, the 4 wt%ZrO? addition resulted in a 14% increase in grain size as compared to the parent alumina matrix. X-ray diffraction analysis revealed that there was approximately 85% monoclinic (m-ZrO2) vs. 15% tetragonal (t-ZrO2) crystal structures in the A4ZrO? sample whilst the A10ZrO? had approximately 93% m-ZrO2 vs. 7% t-ZrO2. The high-volume fraction of the monoclinic crystal structures in the A10ZrO? accounts for the induced microcracks in the sample since the transition from the ductile-tetragonal to brittle-monoclinic is associated with the exertion of compressive stresses on the alumina matrix by the associated elastic volume expansion of m-ZrO2. Also, the addition of 0.5 wt%graphene resulted in about 37% reduction in the grain size of the alumina matrix, and approximately 10% increase in hardness as a result of the distribution of graphene along the grain boundaries of the parent alumina matrix, which restricts grain coalescence and growth during processing. Furthermore, an increase up to 115% and 164% were observed in the fracture toughness (KIC) with the inclusion of 0.5 wt%graphene and 10 wt%ZrO? respectively, which was primarily ascribed to the fine-grained microstructures and toughening mechanisms of the intergranular graphene and ZrO? particles.  相似文献   
4.
In this study the effects of high temperature and moisture on the impact damage resistance and mechanical strength of Nextel 610/alumina silicate ceramic matrix composites were experimentally evaluated. Composite laminates were exposed to either a 1050°C isothermal furnace-based environment for 30 consecutive days at 6 h a day, or 95% relative humidity environment for 13 consecutive days at 67°C. Low velocity impact, tensile and short beam strength tests were performed on both ambient and environmentally conditioned laminates and damage was characterized using a combination of non-destructive and destructive techniques. High temperature and humidity environmental exposure adversely affected the impact resistance of the composite laminates. For all the environments, planar internal damage area was greater than the back side dent area, which in turn was greater than the impactor side dent area. Evidence of environmental embrittlement through a stiffer tensile response was noted for the high temperature exposed laminates while the short beam strength tests showed greater propensity for interlaminar shear failure in the moisture exposed laminates. Destructive evaluations exposed larger, more pronounced delaminations in the environmentally conditioned laminates in comparison to the ambient ones. External damage metrics of the impactor side dent depth and area directly influenced the post-impact tensile strength of the laminates while no such trend between internal damage area and residual strength could be ascertained.  相似文献   
5.
《Ceramics International》2021,47(21):29949-29959
High carbon footprint of cement production is the major drawback of plain cement concrete resulting in environmental pollution. Geopolymer composites paste can be effectively used as an alternative to Portland cement in the construction industry for a sustainable environment. The demand for high-performance composites and sustainable construction is increasing day by day. Therefore, the present experimental program has endeavored to investigate the mechanical performance of basalt fiber-reinforced fly ash-based geopolymer pastes with various contents of nano CaCO3. The content of basalt fibers was fixed at 2% by weight for all specimens while the studied contents of nano CaCO3 were 0%, 1%, 2%, and 3%, respectively. The compressive strength, compressive stress-strain response, flexural strength, bending stress-strain response, elastic modulus, toughness modulus, toughness indices, fracture toughness, impact strength, hardness, and microstructural analysis of all four geopolymer composite pastes with varying contents of nano CaCO3 using scanning electron microscopy (SEM) were evaluated. The results revealed that the use of 3% nano CaCO3 in basalt fiber-reinforced geopolymer paste presented the highest values of compressive strength and hardness while the use of 2% nano CaCO3 showed the highest values of flexural strength, impact strength, and fracture toughness of composite paste. The SEM results indicated that the addition of nano CaCO3 improved the microstructure and provided a denser geopolymer paste by refining the interfacial zones and accelerating the geopolymerization reaction.  相似文献   
6.
The influence of cementite spheroidization on the impact toughness and electrochemical properties of a high-carbon steel has been thoroughly investigated in this study. Heavy warm rolling, followed by 2 h of annealing, has resulted in near-complete spheroidization, leading to a microstructure consisting of nano-cementite globules dispersed in the ultrafine-grained ferritic matrix. The Charpy impact test exhibited superior impact toughness with increased spheroidization. It is validated by the presence of abundant dimples in the fractographs of spheroidized specimens, in contrast to the as-received one that experienced a brittle failure due to its lamellar pearlitic structure. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) carried out in a 3.5% NaCl solution revealed that the corrosion resistance of the alloy gets improved with the increase in the degree of spheroidization. This is attributed to the lower susceptibility of the spheroidized specimen to microgalvanic corrosion owing to the minimum area of contact between nano-spheroidized cementite and ferrite, as elucidated with the help of EIS results aided by equivalent electrical circuit model.  相似文献   
7.
MC nylon-6-b-polyether amine copolymers were prepared with macro-initiator based on amino-terminated polyether amine functionalized with isocyanate via in-situ polymerization. It was found that the introduction of polyether amine delayed the polymerization process of caprolactam by increasing apparent activation energy and pre-exponential factor, resulting in the decrease of molecular weight of nylon-6. The motion of molecular chain of the copolymers was easy because of the decreased hydrogen bonds and weakened inter-molecular forces. The physical entanglement of molecular chains of the copolymers was significant and strong which increased the entanglement density. Only the nylon-6 phase crystallized in the copolymers and the crystal grain size, spherulite size and crystallinity of the copolymers decreased. A small amount of γ crystal formed at high polyether amine content. The copolymers presented obvious strain hardening behavior in stress-strain curves and the loss factor dramatically increased while the glass transition temperature and storage module decreased. The fracture surface of the copolymers became rough and presented hairy structure, indicating that the toughening mechanism of the copolymers corresponded to the multi-layer crack extension mechanism.  相似文献   
8.
High amplitude non-linear acoustic methods have shown potential for the identification of micro damage in brittle materials such as concrete. Commonly, these methods evaluate a non-linearity parameter from the relative change in frequency and attenuation with strain amplitude. Here, a novel attenuation model is introduced to describe the free reverberation from a standard impact resonance frequency test, together with an algorithm for estimating the unknown model coefficients. The non-linear variation can hereby by analyzed over a wider dynamic range as compared to conventional methods. The experimental measurement is simple and fully compatible with the standardized free-free linear impact frequency test.  相似文献   
9.
Strain rate is not only an important measure to characterize the deformation property, but also an important parameter to analyze the dynamic mechanical properties of rock materials. In this paper, by using the SHPB test system improved with high temperature device, the dynamic compressive tests of sandstone at seven temperatures in the range of room temperature to 1000 °C and five impact velocities in the range of 11.0–15.0 m/s were conducted. Investigations were carried out on the influences of strain rate on dynamic compressive mechanical behaviors of sandstone. The results of the study indicate that the enhancement effects of strain rates on dynamic compressive strength, peak strain, energy absorption ratio of sandstone under high temperatures still exist. However, the increase ratios of dynamic compressive strength, peak strain, and energy absorption ratio of rock under high temperature compared to room temperature have no obvious strain rate effects. The temperatures at which the strain rates affect dynamic compressive strength and peak strain most, are 800, and 1000 °C, respectively. The temperatures at which the strain rates affect dynamic compressive strength and peak strain weakest, are 1000 °C, and room temperature, respectively. At 200 and 800 °C, the strain rate effect on energy absorption ratio are most significant, while at 1000 °C, it is weakest. There are no obvious strain rate effects on elastic modulus and increase ratio of elastic modulus under high temperatures. According to test results, the relationship formula of strain rate with high temperature and impact load was derived by internalizing fitting parameters. Compared with the strain rate effect at room temperature condition, essential differences have occurred in the strain rate effect of rock material under the influence of high temperature.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号