首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55582篇
  免费   4815篇
  国内免费   4907篇
电工技术   1024篇
综合类   2795篇
化学工业   5449篇
金属工艺   26335篇
机械仪表   2802篇
建筑科学   740篇
矿业工程   1126篇
能源动力   1118篇
轻工业   3544篇
水利工程   45篇
石油天然气   610篇
武器工业   701篇
无线电   1561篇
一般工业技术   9621篇
冶金工业   6169篇
原子能技术   500篇
自动化技术   1164篇
  2024年   280篇
  2023年   908篇
  2022年   1599篇
  2021年   1809篇
  2020年   1938篇
  2019年   1513篇
  2018年   1569篇
  2017年   1962篇
  2016年   1765篇
  2015年   1894篇
  2014年   2686篇
  2013年   3040篇
  2012年   3411篇
  2011年   4182篇
  2010年   3035篇
  2009年   3296篇
  2008年   2696篇
  2007年   3754篇
  2006年   3748篇
  2005年   3028篇
  2004年   2635篇
  2003年   2287篇
  2002年   1924篇
  2001年   1749篇
  2000年   1476篇
  1999年   1239篇
  1998年   930篇
  1997年   918篇
  1996年   860篇
  1995年   625篇
  1994年   578篇
  1993年   425篇
  1992年   382篇
  1991年   266篇
  1990年   261篇
  1989年   201篇
  1988年   128篇
  1987年   57篇
  1986年   29篇
  1985年   34篇
  1984年   37篇
  1983年   25篇
  1982年   32篇
  1981年   22篇
  1980年   13篇
  1979年   8篇
  1978年   11篇
  1977年   7篇
  1976年   8篇
  1975年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
A new reverse build-up method is developed to fabricate an economical H2-permeable composite membrane. Sputtering and electroplating are used for the formation of a membrane comprised of a 3.7-μm-thick Pd60Cu40 (wt.%) alloy layer and a 13-μm-thick porous Ni support layer, respectively. The H2-permeation measurements are performed under the flow of a gaseous mixture of H2 and He at 300–320 °C and 50–100 kPa of H2 partial pressure. The H2/He selectivity values exceed 300. The activation energy at 300–320 °C is 10.9 kJ mol−1. The H2 permeability of the membrane is 1.25 × 10−8 mol m−1 s−1 Pa−0.5 at 320 °C after 448 h. The estimated Pd cost of the proposed membrane is approximately 1/8 of the cost for a pure Pd60Cu40 membrane. This study demonstrates that the proposed method allows the facile production of low-cost, Pd-based membranes for H2 separation.  相似文献   
2.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
3.
The uniaxial tensile test of the 5A06-O aluminium–magnesium (Al–Mg) alloy sheet was performed in the temperature range of 20–300 °C to obtain the true stress–true strain curves at different temperatures and strain rates. The constitutive model of 5A06-O Al–Mg alloy sheet with the temperature range from 150 to 300°C was established. Based on the test results, a unique finite element simulation platform for warm hydroforming of 5A06-O Al–Mg alloy was set up using the general finite element software MSC.Marc to simulate warm hydroforming of classic specimen, and a coupled thermo-mechanical finite element model for warm hydroforming of cylindrical cup was built up. Combined with the experiment, the influence of the temperature field distribution and loading conditions on the sheet formability was studied. The results show that the non-isothermal temperature distribution conditions can significantly improve the forming performance of the material. As the temperature increases, the impact of the punching speed on the forming becomes particularly obvious; the optimal values of the fluid pressure and blank holder force required for forming are reduced.  相似文献   
4.
Xanthohumol (XH) is an important prenylated flavonoid that is found within the inflorescence of Humulus lupulus L. (Hop plant). XH is an important ingredient in beer and is considered a significant bioactive agent due to its diverse medicinal applications, which include anti-inflammatory, antimicrobial, antioxidant, immunomodulatory, antiviral, antifungal, antigenotoxic, antiangiogenic, and antimalarial effects as well as strong anticancer activity towards various types of cancer cells. XH acts as a wide ranging chemopreventive and anticancer agent, and its isomer, 8-prenylnaringenin, is a phytoestrogen with strong estrogenic activity. The present review focuses on the bioactivity of XH on various types of cancers and its pharmacokinetics. In this paper, we first highlight, in brief, the history and use of hops and then the chemistry and structure–activity relationship of XH. Lastly, we focus on its prominent effects and mechanisms of action on various cancers and its possible use in cancer prevention and treatment. Considering the limited number of available reviews on this subject, our goal is to provide a complete and detailed understanding of the anticancer effects of XH against different cancers.  相似文献   
5.
6.
The environmental performance of 316L grade stainless steel, in the form of tensile specimens containing a single corrosion pit with various aspect ratios, under cyclic loading in aerated chloride solutions is investigated in this study. Results from environmental tests were compared and contrasted with those obtained using finite element analysis (FEA). Fractography of the failed specimens obtained from experiments revealed that fatigue crack initiation took place at the base of the shallow pit. The crack initiation shifted towards the shoulder and the mouth of the pit for pits of increasing depth. This process is well predicted by FEA, as the strain contour maps show that strain is the highest around the centric strip of the pit. However, for shallow pits, local strain is uniformly distributed around that strip but begins to concentrate more towards the shoulder and the mouth region for increasingly deep pits.  相似文献   
7.
Alloy hardened steels offer excellent combination of mechanical properties, hardenability and corrosion resistance. 34CrMo4 is a medium carbon, low alloy steel widely used due to a good combination of high-strength, toughness and wear resistance. However, this steel experiences hydrogen embrittlement (HE), a complex phenomenon depending on the composition and microstructure. This work estimates de loss of the mechanical properties caused by hydrogen in electrochemically H-charged specimens in absence of mechanical stress but also, at low strain rate and constant load. H-charging for 2 and 6 h induce YS losses of about 40% and 71% and UTS losses of 39% and 59%, respectively. The synergistic effect of the stress and the H-charging process leads to a higher loss, 91%, and a faster brittle fracture even though hydrogen content is similar to those firstly H-charged and then tested in air.  相似文献   
8.
There are many potential causes of corrosion in animal buildings. Animals exhale large quantities of moisture into the air creating high relative humidity in the building if the moisture is not properly vented. High humidity increases the potential for condensation. In addition, ammonia may be found in large quantities in animal buildings. Ammonia is released from manure and urine. In addition, ammonium chloride is used as a nitrogen source in fertilisers. In this study, the atmospheric corrosion of hot-dip-galvanised steel and zinc alloy-coated steel such as zinc–aluminium and zinc–aluminium–magnesium has been studied in atmospheres containing different levels of ammonia. Investigations have also been conducted at different levels of ammonium chloride. The results are discussed in view of the mechanisms of corrosion of zinc and zinc alloy-coated steel in ammonia and ammonium chloride-containing environments.  相似文献   
9.
The mechanical property of age‐hardenable Al‐alloys is governed by the state of ageing, which determines the microstructure and consequently, their corrosion behavior which is a vital aspect for a number of applications. This article presents a comparative assessment of corrosion behavior of under‐, peak‐ and over‐aged Al‐Mg‐Si alloy. Corrosion characteristics have been determined via immersion tests in 0.1 M ortho‐phosphoric acid solution and intergranular corrosion (IGC) tests. Corroded surfaces are examined by field emission scanning electron micrographs‐energy dispersive spectroscopy and 3D optical profilometer. The obtained results reveal that the corrosion rate at a specific immersion time as well as the depth of IGC increases in the order for under‐, peak‐, and over‐aged states. Irrespective of the state of ageing, corrosion loss increases linearly but the rate of corrosion decreases rapidly with increasing immersion time. The dominant mode of corrosion in under‐aged alloy is identified as localized pitting, while peak‐aged is highly susceptible to IGC in contrast extensive pitting corrosion is observed for over‐aged alloy. The observed differences in corrosion behavior are explained considering characteristics of precipitates. Formation of β (Mg2Si) in case of over‐aged alloy and presence of inclusions like AlFeMnSi particles are found to accelerate pitting corrosion.  相似文献   
10.
The Fe−Ni−TiO2 nanocomposite coatings were electrodeposited by pulse frequency variation. The results showed that the nanocomposite with a very dense coating surface and a nanocrystalline structure was produced at higher frequencies. By increasing the pulse frequency from 10 to 500 Hz, the iron and TiO2 nanoparticles contentswere increased in expense of nickel content. XRD patterns showed that by increasing the frequency to 500 Hz, an enhancement ofBCC phase was observed and the grain size of deposits was reduced to 35 nm. The microhardness and the surface roughness were increased to 647 HV and 125 nm at 500 Hz due to the grain size reduction and higher incorporation of TiO2 nanoparticles into the Fe−Ni matrix (5.13 wt.%). Moreover, the friction coefficient and wear rate values were decreased by increasing the pulse frequency;while the saturation magnetization and coercivity values of the composite deposits were increased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号