首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   4篇
  国内免费   45篇
电工技术   46篇
综合类   17篇
化学工业   13篇
金属工艺   112篇
机械仪表   10篇
矿业工程   14篇
轻工业   2篇
武器工业   1篇
无线电   4篇
一般工业技术   49篇
冶金工业   99篇
原子能技术   1篇
自动化技术   1篇
  2023年   12篇
  2022年   12篇
  2021年   15篇
  2020年   5篇
  2019年   11篇
  2018年   7篇
  2017年   5篇
  2016年   12篇
  2015年   6篇
  2014年   6篇
  2013年   10篇
  2012年   13篇
  2011年   21篇
  2010年   10篇
  2009年   25篇
  2008年   17篇
  2007年   17篇
  2006年   19篇
  2005年   23篇
  2004年   21篇
  2003年   13篇
  2002年   18篇
  2001年   7篇
  2000年   5篇
  1999年   12篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1994年   7篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   7篇
  1988年   3篇
  1986年   1篇
排序方式: 共有369条查询结果,搜索用时 9 毫秒
1.
热压/热变形Nd2Fe14B/α-Fe纳米双相永磁体的研究   总被引:3,自引:0,他引:3  
为了制备各向异性块状Nd2Fe14B/α—Fe纳米双相永磁体,研究了热压/热变形工艺参数与样品微观组织结构、磁性能之间的关系。结果表明,饱和磁化强度Js随模压温度的升高而提高;而剩磁Jr、内禀矫顽力Hcj和最大磁能积(BH)max开始都随模压温度的升高而上升,但超过一定温度后反而降低;同时提高热压压力会使磁性能增加,而热变形温度对磁性能影响很小。热变形后样品垂直于压力方向的磁性能略高于平行于压力方向,呈现出轻微的各向异性。Nd2Fe14B/α—Fe纳米双相永磁材料在热压/热变形后没有产生晶粒的择优长大,在晶体学上仍然是各向同性的。  相似文献   
2.
Sintered Nd-Fe-B magnet was manufactured by advanced equipment via a SC (Strip casting) technology.It has integrative performance.  相似文献   
3.
Recent developments of high-performance NEOMAX magnets   总被引:6,自引:0,他引:6  
For further improvement in achieving extremely high magnetic properties of Nd- Fe- B sintered magnets, extensive investigation has been done to densify the magnet up to the theoretical value, to increase the volume fraction of the Nd 2Fe14B matrix phase, and to achieve a high degree of alignment. By controlling chemical composition and the amount of constituent phases,improving particle size distribution, and adopting the isostatic pressing method to get better alignment of fine particles, we have succeeded in obtaining a high-performance magnet having residual flux density (Br) of 1.495 T (14.95 kG), maximum energy product [(BH)max] of 431 kj/m3 (54.2 MGOe), and intrinsic coercivity (iHc) of 845 kA/m (10.62 kOe).  相似文献   
4.
To improve the coercivity and temperature stability of Nd-Fe-B sintered magnets for high-temperature applications, the eutectic Tb80Fe20 (wt%) alloy powders were added into the Nd-Fe-B sintered magnets by intergranular method to enhance the coercivity (Hcj) and thermal stability. The microstructure, magnetic properties and thermal stability of the Nd-Fe-B magnets with different Tb80Fe20 contents were studied. The experimental results demonstrate that the coercivity (Hcj) of the sintered Nd-Fe-B magnet is significantly enhanced from 14.12 to 27.78 kOe, and the remanence (Br) decreases not obviously by introducing 4 wt% Tb80Fe20 alloy. Meanwhile, the reversible temperature coefficients of coercivity (β) and remanence (α) of the Nd-Fe-B magnets are increased from ?0.5634%/℃ to ?0.4506%/℃ and ?0.1276%/℃ to ?0.1199%/℃ at 20–170 ℃, respectively. The Curie temperature (TC) of the Nd-Fe-B magnet is slightly enhanced with the increase of Tb80Fe20 content. Moreover, the irreversible flux magnetic loss (hirr) is obviously reduced as Tb80Fe20 addition increases. Further analysis of the microstructure reveals that a modified microstructure, i.e. clear and continuous RE-rich grain boundary layer, is acquired in the sintered magnets by introducing Tb80Fe20 alloy. The associated mechanisms on improved coercivity and thermal stability were comprehensively researched.  相似文献   
5.
Nanocrystalline Nd2Fe14B/α—Fe permanent magnet   总被引:2,自引:0,他引:2  
Nd8.5Fe75Co5Cu1Zr3Nb1B6.5bonded magnet was prepared by melt-spinning(vs=18m/s)and subsequent heat treatment(670℃,4min).Excellent magnetic properties of the bonded magnet were achieved:Br=0.68T,iHc=620.3kA/m,(BH)max=74kJ/m^3.The addition of Cu and Zr elements shows to be advantageous in improving an intrinsic coercivity and squareness of hysteresis loop,as well as energy product.In has a remarkable remanence enhancement and the isotropic saturation remanence ratio Mr/Ms is 0.83.  相似文献   
6.
粘结型Nd—Fe-B永磁体具有组织疏松、孔隙率高、强度低、耐热性差等特点。试验了孔隙封闭、除毛刺、边角滚光及活化除去基体氧化膜等前处理技术。研究化学镀Ni—P工艺,选择一次性化学镀Ni—P合金工艺,成功地解决了Nd—Fe-B永磁体的防腐技术问题。既简化了工艺流程,缩短了施镀时间,又降低了成本。本工艺亦适合烧结型Nd—Fe-B永磁体的防腐。  相似文献   
7.
王蓬  杨植岗 《物理测试》2005,23(1):21-25
基于不同氧化物与碳的结合能不同,与碳的还原反应在不同的分析条件下具有先后次序,用脉冲红外氧化物夹杂分析仪,对4μm的烧结Nd Fe B永磁材料粉末的氧化行为进行了方法研究。实验结果表明,通过合理设置参数,选用跟踪升温模式,可以快速分离Nd Fe B永磁材料粉末中的不同氧化物,并可以通过加权方法进行定性验证。  相似文献   
8.
张宁  罗阳 《金属学报》1989,25(2):116-120
观察了Nd-Fe-B三元合金铸态与均匀化处理后的金相组织,并进行了微区成分分析和物相鉴定。确定了Nd-Fe-B成分三角在室温下的各个平衡相区,绘制了该三元系在室温下的等温截面相图。  相似文献   
9.
Temperature stability and toughness of magnets are very important properties especially for application in motor. In this paper, it is found that temperature stability and toughness of magnets are improved when Fe is substituted with Co andheavy rare earth is substituted for Nd in part and suitable rich B grain-boundary phase is added. In addition, heavy rare earth substitution decreases the remanence temperature coefficient greatly, but has a little effect on Curie temperature of the magnets, which is beneficial to Nd-Fe-B magnets for the application in motor.  相似文献   
10.
The advent of neodymium-iron-boron materials having excellent magnetic properties and potential economic advantages has initiated a new era in permanent magnet technology. One method of making these magnets is by the rapid solidification process. It is typically carried out by melt spinning, which produces a highly stable, dmagnetically hard microstructure powder, directly from the melt. This can be used for bonded magnet applications. Alternatively, this powder can be hot pressed to produce fully dense isotropic magnets with energy products up to 15 MGOe. Anisotropic magnets with energy products ranging up to 50 MGOe can be produced by thermomechanical orientation or hot deformation process. Current processing and properties of Magnequench (General Motors) materials are reviewed, das well as the applications and advances of these materials. The advances include high-temperature bonded magnet and high-energy product anisotropic bonded and fully dense magnets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号