首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17058篇
  免费   2475篇
  国内免费   871篇
电工技术   81篇
综合类   1180篇
化学工业   9618篇
金属工艺   548篇
机械仪表   206篇
建筑科学   756篇
矿业工程   861篇
能源动力   859篇
轻工业   1413篇
水利工程   238篇
石油天然气   1271篇
武器工业   16篇
无线电   216篇
一般工业技术   1848篇
冶金工业   652篇
原子能技术   386篇
自动化技术   255篇
  2024年   68篇
  2023年   279篇
  2022年   523篇
  2021年   695篇
  2020年   721篇
  2019年   652篇
  2018年   685篇
  2017年   715篇
  2016年   779篇
  2015年   738篇
  2014年   988篇
  2013年   1193篇
  2012年   1584篇
  2011年   1267篇
  2010年   943篇
  2009年   1019篇
  2008年   774篇
  2007年   1013篇
  2006年   983篇
  2005年   719篇
  2004年   631篇
  2003年   533篇
  2002年   428篇
  2001年   351篇
  2000年   363篇
  1999年   262篇
  1998年   253篇
  1997年   191篇
  1996年   163篇
  1995年   124篇
  1994年   158篇
  1993年   111篇
  1992年   95篇
  1991年   70篇
  1990年   56篇
  1989年   34篇
  1988年   43篇
  1987年   43篇
  1986年   22篇
  1985年   32篇
  1984年   29篇
  1983年   15篇
  1982年   9篇
  1981年   7篇
  1980年   9篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1959年   4篇
  1951年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The spongy nickel oxide (SNO) was synthesized the solution combustion method. The SNO was selected as a promoter to boost the catalytic activity of nanoraspberry-like palladium (NRPd) toward electrooxidation of five light fuels (LFs): methanol, ethanol, formaldehyde, formic acid, and ethylene glycol. The X-ray powder diffraction, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy, and field emission scanning electron microscope techniques were used for the materials characterization. In comparison with nonpromoted Pd, the NRPd-SNO electrocatalyst shown an excellent efficiency in parameters like the electrochemical active surface area and anti-CO poisoning behavior. The turnover data and the parameters, including reaction order, activation energy, and the coefficients of electron transfer and diffusion, were evaluated for the each process of LFs electrooxidation. The outcome for NRPd-SNO activity toward LFs electrooxidation was compared to some reported electrodes. The SNO increases the removal of intermediates created in the oxidation of LFs that can poison the surface of palladium catalyst. This is due to the presence of the lattice oxygens in SNO structure and Ni switching between its high and low valances. The compatibility of the adsorption process of LFs on the surface of the NRPd-SNO catalyst with different isotherms was determined by studying the Tafel polarization and calculating the surface coverage.  相似文献   
2.
3.
An ecofriendly and biodegradable porous structure was prepared from drying aqueous foams based on nano fibrillated cellulose (NFC), extracted from softwood pulp by subcritical water/CO2 treatment (SC-NFC). The primary aim of this work was to use the modified SC-NFC as stabilizer for a water-based Pickering emulsion which upon drying, yielded porous cellulosic materials, a good dye adsorbent. In order to exploit the carboxymethylated SC-NFC (CMSC-NFC, with a degree of substitution of 0.35 and a charge density of 649 μeqv/g) as a stabilizer for water-based Pickering emulsion in subsequent step, an optimized quantity of octyl amine (30 mg/g of SC-NFC) was added to make them partially hydrophobic. A series of dry foam structures were prepared by varying the concentrations of treated CMSC-NFCs and 4 wt% was found to be the optimum concentration to yield foam with high porosity (99%) and low density (0.038 g/cc) along with high compression strength (0.24 MPa), superior to the conventionally extracted NFC. The foams were applied to capture as high as 98% of methylene blue dyes, making them a potential green candidate for treating industrial effluent. In addition, the dye adsorption kinetics and isotherms were found to be well suited with second order kinetics and Langmuir isotherm models.  相似文献   
4.
《Ceramics International》2022,48(14):20062-20069
Photocatalytic N2 fixation is a promising and sustainable manufacturing process of ammonia (NH3); however, the NH3 production rate by this method is very low, thus severely restricting further application of this sustainable technology. Therefore, developing an efficient photocatalyst for N2 fixation under mild conditions is urgently required. Herein, ferroelectric Bi2WO6 materials with different surface oxygen defects were prepared, and the concentration of corresponding defects was controlled by adjusting the thermal reduction time. The abundant oxygen defects in Bi2WO6 can provide more reactive sites to promote the effective adsorption of N2, and the photogenerated charge carrier can be efficiently separated benefiting from the internal electric field. These would weaken the N2 triple bond and reduce the activation energy barrier for the conversion of N2 to NH3 under mild conditions. In the absence of sacrificial agents and cocatalysts, the optimized Bi2WO6 with oxygen defects shows an indigenous NH3 yield of 132.175 μmol·g-1·L-1·h-1, which is more than two times higher than that of the original Bi2WO6. Surprisingly, the Bi2WO6 with oxygen defects produced more than eight times NH3 (471.13 μmol·g-1·L-1·h-1) than that of the original Bi2WO6 when assisted by an external magnetic field, thus providing a new perspective for further enhancing the N2 fixation performance.  相似文献   
5.
To enhance chemical stability and suppress of aggregation of magnetite nanoparticles (MNPs), which are used as a support for thermoresponsive copolymer immobilization, silica coating of the MNPs is applied via the electrooxidation method. Although the resulting silica coated-MNPs also formed aggregates, the size distribution of the aggregate shifted to smaller size range. Because of that, the surface area available for copolymer immobilization increased approximately 6.7 times at maximum as compared with that of the uncoated MNPs. It contributed to the increase of the amount of the immobilized copolymer on the silica-coated MNPs, which is approximately four times larger than that on the uncoated MNPs. Fe3O4 dissolution test confirmed enhancement of chemical stability of MNPs. The thermoresponsive copolymer immobilized on the silica-coated MNPs shows the ability to recycle Cu(II) ion from Cu(II) containing solution by changing temperature with significantly shorter time than those in other thermoresponsive adsorbents in gel form.  相似文献   
6.
7.
Independent hydrogen production from petrochemical wastewater containing mono-ethylene glycol (MEG) via anaerobic sequencing batch reactor (ASBR) was extensively assessed under psychrophilic conditions (15–25 °C). A lab-scale ASBR was operated at pH of 5.50, and different organic loading rates (OLR) of 1.00, 1.67, 2.67, and 4.00 gCOD/L/d. The hydrogen yield (HY) progressed from 134.32 ± 10.79 to 189.09 ± 22.35 mL/gMEGinitial at increasing OLR from 1.00 to 4.00 gCOD/L/d. The maximum hydrogen content of 47.44 ± 3.60% was achieved at OLR of 4.0 gCOD/L/d, while methane content remained low (17.76 ± 1.27% at OLR of 1.0 gCOD/L/d). Kinetic studies using four different mathematical models were conducted to describe the ASBR performance. Furthermore, two batch-mode experiments were performed to optimize the nitrogen supplementation as a nutrient (C/N ratio), and assess the impact of salinity (as gNaCl/L) on hydrogen production. HY substantially dropped from 62.77 ± 4.09 to 6.02 ± 0.39 mL/gMEGinitial when C/N ratio was increased from 28.5 to 114.0. Besides, the results revealed that salinity up to 10.0 gNaCl/L has a relatively low inhibitory impact on hydrogen production. Eventually, the cost/benefit analysis showed that environmental and energy recovery revenues from ASBR were optimized at OLR of 4.0 gCOD/L/d (payback period of 7.13 yrs).  相似文献   
8.
Shale gas, as an important unconventional resource, has drawn global attention. It is mainly composed of adsorption gas and free gas. Adsorption gas content could play an important guiding role on both the selection of favorable perspective area and the exploration and exploitation of shale gas resources. In order to accurately measure adsorption gas content, a new approach was established to predict the adsorption isotherm of methane on shale. Based on the simplified local-density (SLD) method, both the adsorption isotherms of illite, illite/smectite mixed-layer, cholorite and type III kerogen and the total shale rock could be well fitted. The fitting results show good coincidences with the true experimental test data, which proves the method is reasonable and dependable and the prediction results are effective and credible. In addition, the good simulation results show that the SLD parameters can reflect the pore structure characteristics and corresponding adsorption characteristics of the shale samples, which can be used for the quantitative characterization of shale pore system.  相似文献   
9.
The paper presents a calculated analysis of the equilibrium emission of nitrogen oxides on the exhaust of carburetor and diesel internal combustion engines. The temperature of fuel oxidation is assumed to be 1,400 °C while the pressure for carburetor and diesel engines is assumed to be 60 atm and 80 atm respectively. The studies have been carried out for natural and synthetic fuels such as hydrogen, ethanol, methanol, petroleum, diesel fuel and methane at the excess air coefficient corresponding to the fuel oxidation temperature of 1,400 °C. In the paper, the method for calculating the equilibrium composition based on the equilibrium constant and mass conservation equations has been applied. It is shown that with an increase in pressure from 1 atm to 60 atm for carburetor engines and up to 80 atm for diesel engines, the reaction of nitrogen dioxide formation may shift towards an increase in NO2. The formation of NO may be not affected by the increase in pressure by virtue of the fact that the reaction proceeds without changes in the amount. It has been determined that NO is the major atmospheric pollutant. However, it would be advisable to use more extensively the fuels characterized by the lowest output of nitrogen dioxide (methane and methanol), since nitrogen dioxide (NO2) related to the 2nd hazard class is appeared to be the most dangerous to humans. It has been revealed that the reduction in oxidation temperature using hydrogen as a fuel for electrochemical current generators may allow reducing nitrogen oxide emissions by more than an order of magnitude as compared to the best results for ICE.  相似文献   
10.
In this present work, Ca-alginate-biochar adsorbent has been synthesized, characterized and tested its effectiveness in the removal of aqueous phase Zn2+ metal. The removal efficiency was studied under various physicochemical process parameters. External mass transfer model, intraparticle diffusion model and pseudo-first-order and pseudo-second-order models were used to fit the experimental Zn2+ adoption kinetic results and to identify the mechanism of adsorption. The desorption studies indicate the possibilities of ion-exchange and physical–chemical adsorption of Zn2+. The adsorption was best described by Langmuir isotherm model. Thermodynamic parameters suggested that the adsorption process becomes spontaneous, endothermic and irreversible in nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号