首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   1篇
  国内免费   7篇
综合类   1篇
化学工业   87篇
金属工艺   10篇
机械仪表   2篇
矿业工程   1篇
无线电   1篇
一般工业技术   29篇
  2023年   8篇
  2022年   10篇
  2021年   12篇
  2020年   9篇
  2019年   8篇
  2018年   6篇
  2017年   12篇
  2016年   2篇
  2015年   7篇
  2014年   1篇
  2013年   6篇
  2012年   4篇
  2011年   10篇
  2010年   3篇
  2009年   6篇
  2008年   6篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2001年   3篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
排序方式: 共有131条查询结果,搜索用时 0 毫秒
1.
Ti/Sn/TiC powder mixtures were first employed to synthesize Ti2SnC powder by pressureless sintering in the temperature range of 950–1250 °C at vacuum atmosphere. Ti2SnC began to form at 950 °C, its content increased with increasing temperature. High purity of Ti2SnC was obtained by sintering the mixtures with deficient Sn and TiC at 1200 °C for 15 min. A reaction mechanism was proposed to explain the formation of Ti2SnC. The Ti2SnC powder was characterized by scan electron microscopy (SEM) and X-ray diffraction (XRD). Using the above mixtures and process, the Ti2SnC ceramic powder can be obtained on a larger scale.  相似文献   
2.
Abstract

Since the spontaneous infiltration of molten AZ91 Mg alloy into the powder bed containing SiC particles occurred at 700°C for 1 h under a nitrogen atmosphere, it was possible to fabricate Mg alloy composites reinforced with SiC particles. Since the fabrication conditions (e.g. temperature, time and atmosphere) of the composite are different from those of the other fabrication route, reaction products formed during the composite fabrication were investigated in detail using field emission scanning electron microscopy and high resolution transmission electron microscopy. From the analysis of reaction products, the authors can identify the formation of MgO, MgAl2O4, Al12Mg17 and an AlN phase containing magnesium.  相似文献   
3.
Lithium garnet oxides with 6.5 mol Li, such as Li6.5La3Zr1.5(Ta/Nb)0.5O12, typically crystallise in cubic structure and exhibit excellent room-temperature ionic conductivity close to 1 mS cm?1. However, it is challenging to densify garnet oxides. In this work, we investigated how the co-doping of tantalum (Ta) and niobium (Nb) affects the densification of pressureless sintered garnet electrolytes with compositions of Li6.5La3Zr1.5Ta(0.5?x)NbxO12, where x = 0–0.5. The highest densification (94.5% of relative density) was achieved in Li6.5La3Zr1.5Ta0.1Nb0.4O12 (TN-LLZO) when it was sintered at 1150 °C for 6 h. This TN-LLZO garnet electrolyte delivers an ionic conductivity of 1.04 × 10?3 S cm?1 (at 22 °C) with a low activation energy of 0.41 eV. Our findings demonstrate that the content of dopants (Ta and Nb) plays a critical role in enhancing the sintering performance of garnet ceramics at ambient pressure.  相似文献   
4.
《Ceramics International》2020,46(17):27283-27291
In this study, boron carbide-metallic boride (B4C-MeBx, Me = Ti, Zr, Nb, Ta, or W) multiphase ceramics were fabricated via in situ pressureless sintering at 2250 °C for 1 h. The effects of transition metal carbides, namely, TiC, ZrC, NbC, TaC, and WC, on the phase composition, microstructure, and mechanical properties of the ceramics were investigated. The results showed that MeC could facilitate the sintering densification of B4C by distributing second-phase particles uniformly throughout the B4C. Additionally, the main phases observed were B4C and (Me, W)Bx (Me = Ti, Zr, Nb, or Ta) due to the doping of a small amount of WC during the ball milling process. As a result, the mechanical properties of B4C-MeBx showed significant improvements when compared with those of single-phase B4C ceramics. B4C–NbB2 ceramics were found to exhibit the best mechanical properties, with an elastic modulus of 393.0 GPa, a hardness of 28.7 GPa, a flexural strength of 368.0 MPa, and a fracture toughness of 6.94 MPa m1/2.  相似文献   
5.
《Ceramics International》2020,46(17):27175-27183
The fabrication of silicon nitride (Si3N4) ceramics with a high thermal conductivity was investigated by pressureless sintering at 1800 °C for 4 h in a nitrogen atmosphere with MgO and Y2O3 as sintering additives. The phase compositions, relative densities, microstructures, and thermal conductivities of the obtained Si3N4 ceramics were investigated systemically. It was found that at the optimal MgO/Y2O3 ratio of 3/6, the relative density and thermal conductivity of the obtained Si3N4 ceramic doped with 9 wt% sintering aids reached 98.2% and 71.51 W/(m·K), respectively. EDS element mapping showed the distributions of yttrium, magnesium and oxygen elements. The Si3N4 ceramics containing rod-like grains and grain boundaries were fabricated by focused ion beam technique. TEM observations revealed that magnesium existed as an amorphous phase and that yttrium produced a new secondary phase.  相似文献   
6.
Superhard composites of B4C reinforced with randomly-oriented reduced graphene oxide (rGO) nanoplatelets are manufactured by a near-net-shape fabrication route based on three successive steps. Firstly, aqueous colloidal processing is used for the environmentally-friendly preparation of a semi-concentrated multi-component slurry (B4C as main component, Ti-Al as sintering additive, and rGO as toughening reinforcement), whose suitability for wet shaping is demonstrated by rheological measurements. Secondly, slip casting is used to produce robust green parts with shapes on demand and microstructures free of macro- and micro-defects. And thirdly, pressureless spark-plasma sintering (PSPS) is used for the ultrafast and energy-efficient densification of the green parts with shape retention. Measurements of shrinkage and hardness, as well as the microstructural observations, are used to identify suitable PSPS temperatures leading to obtaining isotropic B4C/rGO composites that are superhard and almost twice as tough as the monolithic B4C ceramics.  相似文献   
7.
造孔剂含量对无压浸渗法制备SiC/Al复合材料性能的影响   总被引:1,自引:0,他引:1  
李飞舟  李红船 《铸造技术》2006,27(11):1188-1191
采用无压浸渗法制备了SiC/Al复合材料,研究了造孔剂含量对SiC/Al复合材料性能的影响。实验结果表明:不同含量的造孔剂对残余气孔率的影响不同,随着造孔剂加入量的增加,残余气孔率先减小后增大,但试样抗弯强度呈先增加后减小。在SiC/Al复合材料中加入质量分数为20%的造孔剂时,SiC/Al复合材料的抗弯强度出现最大值,其残余气孔率达到最小值0.9%左右。  相似文献   
8.
ZrB2-MeC and ZrB2-19 vol% SiC-MexCy where Me=Cr, Mo, W were obtained by pressureless sintering. The capability to promote densification of ZrB2 and ZrB2-SiC matrices is the highest for WC and lowest for Cr3C2. The interaction between the components results in the formation of new phases, such as MeB (MoB, CrB, WB), a solid solution based on ZrC, and a solid solution based on ZrB2. The addition of Cr3C2 decreases the mechanical properties. On the other hand, the addition of Mo2C or WC to ZrB2-19 vol% SiC composite ceramics leads increased mechanical properties. Long-term oxidation of ceramics at 1500 °C for 50 h showed that, in binary ZrB2-MexCy, a protective oxide scale does not form on the surface thus leading to the destruction of the composite. On the contrary, triple composites showed high oxidation resistance, due to the formation of dense oxide scale on the surface, with ZrB2-SiC-Mo2C displaying the best performance.  相似文献   
9.
《Ceramics International》2021,47(19):26991-27001
Hydroxyapatite (HA) scaffolds were fabricated using the space holder method with a pressureless sintering process in a systematically developed manner at different fabrication stages to increase the strength of the scaffold at high porosity. Polyvinyl alcohol (PVA) and Polymethyl methacrylate (PMMA) were used as binders and space holder agents, respectively. The physical properties of the HA scaffolds were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), linear shrinkage test, and porosity measurements. The mechanical properties of the HA scaffolds were analyzed using compressive strength measurements. The results revealed that the HA scaffold met the expected quality requirements with a compressive strength of 2.2 MPa at a porosity of 65.6% with pore sizes distributed in the range of 126–385 μm. The shrinkage of the scaffold diameter occurred by 20.27%, this diameter shrinkage predominantly to the shrinkage of the HA scaffold caused by sintering. Besides, suspect that a higher PMMA concentration causes pore size shrinkage upon sintering. The formation of pore interconnections was evidenced by SEM observations and the ‘translucent light method’ developed in this study. The results of the scaffold phase test using XRD showed that the final scaffold consisted only of the HA phase, as the PVA and PMMA phases burned out during the sintering process.  相似文献   
10.
研究了无压渗透法制备电子封装SiCp/Al复合材料过程中,烧结工艺对SiC预制件开孔率、抗压强度的影响,以及渗透工艺对Al液渗透形成复合材料的影响,并对所制备的复合材料热物理性能和表面涂覆进行了评价。结果表明,经1100℃分段烧结的SiC预制件开孔率、抗压强度较好;Al液浇铸温度、保温温度分别在750~850℃、800~900℃的范围时,SiC预制件的渗透效果较好;所制备的55%SiCp/Al复合材料相对密度为98.3%,热膨胀系数在(7.23~9.97)×10-6K^-1之间变化,热导率为146.5~172.3W/(m.K),复合材料表面涂覆性能可行性好。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号