首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   0篇
  国内免费   1篇
化学工业   26篇
金属工艺   39篇
机械仪表   3篇
能源动力   2篇
轻工业   3篇
一般工业技术   13篇
冶金工业   3篇
  2018年   1篇
  2013年   83篇
  2007年   2篇
  1999年   1篇
  1998年   2篇
排序方式: 共有89条查询结果,搜索用时 31 毫秒
1.
《钢铁冶炼》2013,40(6):473-480
Abstract

This study investigates some effects of austenite microstructure on processes leading to copper hot shortness. Low carbon steels containing 0˙55 wt-% copper were subjected to two thermal profiles in an infrared image furnace with attached confocal scanning laser microscope: hold at 1150°C for 60 s; hold at 1150°C for 60 s, quench to 400°C, reheat to 1150°C. Heat treatments were conducted in dried/deoxidised argon to image microstructures. Subsequent samples were oxidised in air. The oxide/metal interface was studied in a scanning electron microscope. Additional confocal scanning laser microscope experiments involved melting copper directly on the steel. After quench/reheat, austenite grain size decreased by a factor of ~1˙7 and grain boundaries were redistributed. Copper evolved during the first heating was no longer found at boundaries. Results from direct copper exposure reveal an apparent effect of boundary character on copper penetration rate. Possible mechanisms by which hot shortness is affected are discussed.  相似文献   
2.
Abstract

Residual stresses in a circumferentially butt welded steel pipe have been measured and numerically predicted. The pipe, containing the circumferential weld, has an outer diameter of 290 mm and a wall thickness of 55 mm, typical of components in power generation plants. An axisymmetric thermomechanical finite element (FE) simulation has been performed to obtain the residual stress field induced by the fusion welding of the pipe, taking solid state phase transformation effects into account and using temperature dependent material property data. Residual stresses have been measured using the X-ray diffraction and deep hole drilling techniques. Good correlation has been demonstrated with the predictions of the FE model. The paper demonstrates that a mixed experimental and numerical approach is useful for determining the residual stress distribution in welded joints.  相似文献   
3.
A failure criterion for debonding initiation between molding compounds and copper leadframes in plastic encapsulated integrated circuit (IC) packages is proposed. The leadframe pull-out test is used to evaluate the bond strengths between molding compounds and leadframes in plastic encapsulated IC packages. The normal and shear stress fields along the interface are analyzed using the finite element method. An average stress approach is employed for the interface failure criterion and the tensile and shear interface bond strengths are obtained from the experimental failure loads. In a parametric study, the effects of specimen loading geometry, moisture, and surface contamination of copper leadframes on the interfacial bond strengths are specifically analyzed. The results show that the interface bond strengths determined for the two specimen geometries are consistent.  相似文献   
4.
A mathematical procedure is developed to utilize the complementary energy method, by minimization, in order to obtain an approximate analytical solution to the 3D stress distributions in bonded interfaces of dissimilar materials. The stress solutions obtained predict the stress jumps at the interfaces, which cannot be captured by current FEA methods. As a novel method, the penalty function is used to enforce the displacement boundary conditions at the interfaces. Furthermore, the mathematical procedure developed enables the integration of different interfacial topographies into the solution procedure. In order to incorporate the effects of surface topography, the interface is expressed as a general surface in Cartesian coordinates, i.e. F (x, y, z) = 0. In this paper, the flat interface problem, i.e. y = 0 surface is considered for verification of the method by comparison with the FEA method. A comparison of the results reveals our new mathematical procedure to be a promising and efficient method for optimizing interface topographies.  相似文献   
5.
Amorphous silicon-containing diamond-like carbon (Si-DLC) coatings were deposited by Ar+ ion beam-assisted physical vapor deposition of tetraphenyl-tetramethyl-trisiloxane (704 Dow Corning diffusion pump oil) on AISI 4340 low alloy and 440° C high alloy steel specimens, as well as on thin wafers of the same compositions, in order to evaluate residual stresses within the coatings. During annealing in an argon atmosphere at 200°C for up to 30 min, the residual compressive stress, attributed to hydrogen entrapment during deposition, gradually changed to tensile due to loss of hydrogen, and the rate of stress increase decreased with increasing annealing time. The cohesion and adhesion failure loads of the coatings decreased with annealing time, as did the friction coefficient between the coating and a diamond stylus. The specific wear rate, measured by pin-on-disk tribometry, increased with annealing time. These properties are affected not only by the change in residual stress state during annealing, but most likely also by devitrification and the accompanying grain growth. If these effects are neglected, then the properties may be correlated directly with residual stresses in the coating.  相似文献   
6.
Several high-temperature processes in chemical,petrochemical, and energy-processing industry arecharacterized by H2S-containing atmospheres,confronting engineers with severe corrosion attack ofthe metallic components. Sulfidation is observed onmaterials used for heat exchangers within theheat-recovery zones. The damage is originated not onlyby the relatively fast growth rates of the sulfidescales, but is also due to the loss of their limitedprotective effect by cracking. Scale failure, as aconsequence of stresses generated during scale growthand by temperature changes, was investigated on a carbon steel, a low-chromium steel (1Cr-0.4Mo, T12),a ferritic-chromium steel (12Cr-1Mo), and on austeniticsteel (18Cr-9Ni, AISI 321). The experiments in thetemperature range 400-600°C (700°C), withsubsequent cooling to ambient temperature, wereaccompanied by acoustic-emission measurements in orderto detect scale cracking. Critical parameters for scalefailure are presented.  相似文献   
7.
Abstract

The solidification behaviours and microstructural characteristics of both ZA27/SiCp composites and monolithic ZA27 alloy were studied by using differential scanning calorimetry, scanning electron microscopy, transmission electron microscopy, electron probe microanalysis, and X-ray diffraction. It was found that there were differences in the transformation temperature and volume fraction of the phases, although the solidification process was almost identical for the composite and the monolithic alloy. The incorporation of SiC particles in the ZA27 alloy led to slight refinement of primary grains and reduced volume fraction of eutectic-like phase. The SiC particles obstructed Zn diffusion in the residual melt during the formation of proeutectic β phase, but promoted Zn diffusion from (Al) to η (Zn) phase during eutectoid transformation. During solidification, Cu was mainly segregated in the final solidification regions; Mg was present not only in the matrix but also on SiC particles; and oxide inclusions were mainly distributed around SiC particles. The matrix microstructure for both materials mainly consisted of primary cores of Al rich +η eutectoid; β′ phase resulting from the eutectoid transformation of the proeutectic β phase; and Zn rich +η eutectoid resulting from the eutectoid transformation of the eutectic-like phase. The SiC particles were mainly distributed around the primary grains. Several new phases based on the Al–Zn–Mg–Cu system and interfacial reaction products, including Al21Fe3Si, Cu5Zn8, Mg6Cu3Al7, MgAl2O4, and amorphous oxide inclusions, were identified in the final solidification regions. The nucleation of both primary phase and eutectic-like +η phase at the surface of SiC particles and their crystallographic orientation relationships were investigated theoretically and experimentally. No distinct crystallographic orientation relationship between the matrix and SiC has been identified, although the mismatch between (0001)SiC and (111) was calculated to be as small as 7·6%.  相似文献   
8.
Abstract

A methodology has been developed using a non-destructive ultrasonic technique for measuring surface/subsurface residual stresses in 7 mm thick AISI type 316LN stainless steel weld joints made by activated tungsten inert gas and multipass tungsten inert gas welding processes. Measurement of residual stresses using an ultrasonic technique is based on the effect of stresses on the propagation velocity of elastic waves. Critically refracted longitudinal L CR wave mode was employed and accurate transit time measurements were made across the weld joints. Quantitative values of the longitudinal residual stresses across the weld joints were estimated from the measured transit times and predetermined value of acoustoelastic constant for AISI type 316LN stainless steel. The nature of the residual stress profiles and their variations across the two types of weld joints were compared and interpreted.  相似文献   
9.
Abstract

The distribution of residual stresses due to welding has been studied in maraging steel welds. Gas tungsten arc welding process was used and the effect of filler metal composition on the nature of residual stress distribution has been investigated using X-ray diffraction technique with Cr Kα radiation. Three types of filler materials were used, they include: maraging filler, austenitic stainless steel and medium alloy medium carbon steel filler metal. In the case of maraging steel weld, medium alloy medium carbon filler, the residual stress at the centre of the weld zone was more compressive while, less compressive stresses have been identified in the heat affected zone of the parent metal adjacent to the weld metal. But, in the case of austenitic stainless steel filler the residual stresses at the centre of the weld and heat affected zone were tensile. Post-weld aging treatment reduced the magnitude of stresses. The observed residual stress distribution across the weldments has been correlated with microstructure and hardness distribution across the weld.  相似文献   
10.
Abstract

Developments in some difficult repair welding technologies in Japan during the past decade are reviewed. The topics covered include the repair welding of bridges in service, the temper bead method which makes it possible to omit post-weld heat treatment (PWHT) of repaired pressure vessels, the seal welding of a reactor vessel in which stress corrosion cracks were detected, low heat input repair welding of neutron irradiated stainless steel and nickel based alloys, the prevention of solidification cracking in repair welding of aged heat resistant cast steels, the development of welding materials for the mending of single crystal nickel based superalloy turbine blades, underwater repair welding of nuclear reactors, the reduction of residual stresses in repair welding, and an ultrasonic testing method for nickel based weld metals. The local PWHT of creep resistant ferritic steel tubes is also reviewed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号