首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26409篇
  免费   1039篇
  国内免费   454篇
电工技术   648篇
技术理论   1篇
综合类   1204篇
化学工业   3153篇
金属工艺   2983篇
机械仪表   877篇
建筑科学   3152篇
矿业工程   635篇
能源动力   1542篇
轻工业   360篇
水利工程   92篇
石油天然气   867篇
武器工业   29篇
无线电   256篇
一般工业技术   1079篇
冶金工业   10269篇
原子能技术   49篇
自动化技术   706篇
  2024年   22篇
  2023年   116篇
  2022年   344篇
  2021年   382篇
  2020年   400篇
  2019年   264篇
  2018年   289篇
  2017年   394篇
  2016年   607篇
  2015年   623篇
  2014年   1523篇
  2013年   1282篇
  2012年   1763篇
  2011年   2165篇
  2010年   1444篇
  2009年   1457篇
  2008年   1121篇
  2007年   1656篇
  2006年   1585篇
  2005年   1506篇
  2004年   1218篇
  2003年   1190篇
  2002年   1052篇
  2001年   918篇
  2000年   821篇
  1999年   839篇
  1998年   562篇
  1997年   553篇
  1996年   435篇
  1995年   469篇
  1994年   336篇
  1993年   196篇
  1992年   114篇
  1991年   88篇
  1990年   55篇
  1989年   40篇
  1988年   32篇
  1987年   13篇
  1986年   10篇
  1985年   1篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Metals that are exposed to high pressure hydrogen gas may undergo detrimental failure by embrittlement. Understanding the mechanisms and driving forces of hydrogen absorption on the surface of metals is crucial for avoiding hydrogen embrittlement. In this study, the effect of stress-enhanced gaseous hydrogen uptake in bulk metals is investigated in detail. For that purpose, a generalized form of Sievert's law is derived from thermodynamic potentials considering the effect of microstructural trapping sites and multiaxial stresses. This new equation is parametrized and verified using experimental data for carbon steels, which were charged under gaseous hydrogen atmosphere at pressures up to 1000 bar. The role of microstructural trapping sites on the parameter identification is critically discussed. Finally, the parametrized equation is applied to calculate the stress-enhanced hydrogen solubility of thin-walled pipelines and thick-walled pressure vessels during service.  相似文献   
2.
当前,我国水泥工业在可燃废弃物应用技术方面都还处于一家一户、自制自用、效率极低的初级阶段。发达国家的替代燃料:“垃圾衍生燃料”RDF、“固体回收燃料”SRF、“次煤”Subcoal和“纸塑垃圾衍生燃料”RPF制成的原材料都是可燃废弃物,只是处理工艺技术不同或者由垃圾中分拣出的可燃废弃物不同,制成颗粒状衍生燃料的品质不同,这些都可以替代部分甚或替代全部化石燃料在水泥窑炉中应用。我国大力发展“替代燃料”产业,有助于水泥工业消纳更多的“可燃废弃物”,为改善环境尤其是城镇环境和面貌,为我国的节能减排和绿色高质量发展发挥更大的作用。  相似文献   
3.
Hot-dip galvanizing is a standard technology to produce coated steel strips. The primary objective of the galvanizing process is to establish a homogeneous zinc layer with a defined thickness. One condition to achieve this objective is a uniform transverse distance between the strip and the gas wiping dies, which blow off excessive liquid zinc. Therefore, a flat strip profile at the gas wiping dies is required. However, strips processed in such plants often exhibit residual curvatures which entail unknown flatness defects of the strip. Such flatness defects cause non-uniform air gaps and hence an inhomogeneous zinc coating thickness. Modern hot-dip galvanizing lines often use electromagnets to control the transverse strip profile near the gas wiping dies. Typically, the control algorithms ensure a flat strip profile at the electromagnets because the sensors for the transverse strip displacement are also located at this position and it is unfeasible to mount displacement sensors directly at the gas wiping dies. This brings along that in general a flatness defect remains at the gas wiping dies, which in turn entails a suboptimal coating.In this paper, a model-based method for a feedforward control of the strip profile at the position of the gas wiping dies is developed. This method is based on a plate model of the axially moving strip that takes into account the flatness defects in the strip. First, an estimator of the flatness defects is developed and validated for various test strips and settings of the plant. Using the validated mathematical model, a simulation study is performed to compare the state-of-the-art control approach (flat strip profile at the electromagnets) with the optimization-based feedforward controller (flat strip profile at the gas wiping dies) proposed in this paper. Moreover, the influence of the distance between the gas wiping dies and the electromagnets is investigated in detail.  相似文献   
4.
Fretting may cause severe surface damage and lead to unexpected fatigue failure. Our test apparatus was designed based on reciprocating, large, annular flat-on-flat contact without any edge effects in the direction of the fretting movement. Fretting wear tests were run with quenched and tempered steel with different normal pressures and sliding amplitudes under gross sliding conditions. The development of the friction coefficient and total wear mass depended mostly on the accumulated sliding distance. Initially, friction and wear were highly adhesive but gradually changed to abrasive due to third body accumulation in the interface.  相似文献   
5.
张小强  赵娜  徐雪飞 《冶金设备》2020,(1):17-20,45
薄壁钢套类零件是机械制造中常碰到的一类难加工零件,由于其不同的功能用途和典型结构特点,其制造有一定难度,在实际生产过程中,经常出现加工制造后的零件尺寸精度、形状精度、形位精度达不到使用及设计要求。本文较系统地阐述了薄壁钢套类零件的典型制造工艺方法以及在制造过程中的变形分析和应对措施。  相似文献   
6.
ABSTRACT

A mathematical model has been developed by coupling genetic algorithm (GA) with heat and material balance equations to estimate rate parameters and solid-phase evolution related to the reduction of iron ore-coal composite pellets in a multi-layer bed Rotary hearth Furnace (RHF). The present process involves treating iron ore-coal composite pellets in a crucible over the hearth in RHF. The various solid phases evolved at the end of the process are estimated experimentally, and are used in conjunction with the model to estimate rate parameters. The predicted apparent activation energy for the wustite reduction step is found to be lower than those of the reduction of higher oxides. The thermal efficiency is found to decrease significantly with an increase in the carbon content of the pellet. Thermal efficiency was also found to increase mildly up to three layers. Multilayer bed remains as a potential design parameter to increase thermal efficiency.  相似文献   
7.
Rolling contact fatigue in bearing steels is manifested by dark-etching regions, which are attributed to deformation induced tempering. In order to quantitatively explain this phenomenon, a model is suggested for martensite tempering assisted by dislocation glide during rolling contact fatigue. In the model, dislocations transport carbon from the matrix to carbide particles, provided that the carbon is located at a certain distance range from the dislocation contributing to the tempering process. By calculating the amount of carbon in the matrix, the kinetics of carbide thickening and hardness reduction are computed. It is found that the dark-etching region kinetics can be controlled by both bearing operation conditions (temperature and deformation rate) and microstructure (type, size, and volume fraction of carbides). The model is validated against tested bearings, and its limitations are discussed.  相似文献   
8.
《Ceramics International》2022,48(18):26233-26247
A new type of 3D-printable ‘one-part’ geopolymer was synthesized with fly ash (FA), granulated blast furnace slag (GBFS), steel slag (SS) and flue gas desulfurization gypsum (FGD). The effects of SS content (0–40%) on the rheological properties, 3D-printability, mechanical anisotropy and reaction kinetics of geopolymer were investigated. The yield stress and plastic viscosity monotonically decreased with the increasing SS content. Contrarily, the geopolymer with 10% of SS presented better extrudability, buildability and mechanical strength than those with 0, 20%, 30% and 40% of SS. This was mainly attributed to the conflicting influence of SS on geopolymerization, of which the OH? produced by hydration of SS raised the alkalinity of the reaction system and accelerated the dissolution of SiO44? and AlO45?, while the low reactivity prohibited the following polymerization process. Furthermore, the 3D-printed geopolymer presented more compact microstructure and less mechanical anisotropy thanks to the crosslinking of morphologically complementary products, including N(C)-A-S-H, C–S–H, AFt and CH, formed via synergistic reaction of FA-GBFS-SS-FGD system.  相似文献   
9.
《Ceramics International》2022,48(8):10506-10515
The search for materials and methods capable of reducing human impacts on the environment is of utmost importance nowadays. This study's primary purpose was to analyze the technical feasibility of ceramic composites production utilizing Fundão Dam's Iron Ore Tailings (IOT), Blast Furnace Slag (BFS) from charcoal, and Foundry Sand (FS) as partial substitutes for the traditional raw materials – sand and clay – for application in building industry materials. The composites were molded in rectangular specimens and fired at temperatures of 900, 950, 1000, 1050, and 1200 °C. The developed materials were analyzed and characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Thermogravimetry (TGA), and Differential Thermal Analysis (DTA). The obtained materials had flexural strength modulus of up to 12.19 MPa, water absorption ranging from 2 to 22%, linear shrinkage ranging from 0.02 to 6.50%, and apparent density ranging from 2.03 to 1.63 g/cm3. The study of the internal structure formation process revealed the formation of amorphous structures in the composites. The results demonstrated that these waste materials may be jointly used in construction materials, contributing to the reduction of natural resource extraction, besides enabling their correct disposal, minimizing environmental impacts, and improving the life quality of the surrounding communities.  相似文献   
10.
This paper discusses the compressive performance of perforated brick masonry after fire exposure. Compressive strength tests of the mortar, clay perforated brick, and perforated brick masonry specimens were performed in accordance with ISO834 fire tests of different durations. The temperature distribution of the masonry materials and specimens was simulated using the finite element software ABAQUS, with the thermal parameters of masonry materials recommended by European standard Eurocode 6 and related literature. The compressive strength reduction factors of mortar and clay perforated brick exposed to different fire durations were calculated via the layered method suggested by European standard Eurocode 1. In addition, the compressive strength reduction factors after cooldown were obtained from the experimental data of the masonry materials, and by considering further reductions in the compressive strength after cooling from high temperatures. Experimental data of the masonry specimens were compared with the numerical results obtained using the reduction factors proposed in this work. The comparison revealed an overall acceptable approximation. Thus, the method presented in this paper can be used to evaluate the residual capacity of masonry structures after fire.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号