首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12737篇
  免费   652篇
  国内免费   500篇
电工技术   342篇
综合类   587篇
化学工业   3948篇
金属工艺   1686篇
机械仪表   479篇
建筑科学   142篇
矿业工程   257篇
能源动力   233篇
轻工业   369篇
水利工程   12篇
石油天然气   88篇
武器工业   72篇
无线电   781篇
一般工业技术   2058篇
冶金工业   2576篇
原子能技术   110篇
自动化技术   149篇
  2024年   26篇
  2023年   383篇
  2022年   472篇
  2021年   457篇
  2020年   489篇
  2019年   406篇
  2018年   402篇
  2017年   488篇
  2016年   366篇
  2015年   325篇
  2014年   562篇
  2013年   598篇
  2012年   719篇
  2011年   826篇
  2010年   558篇
  2009年   661篇
  2008年   473篇
  2007年   771篇
  2006年   671篇
  2005年   599篇
  2004年   566篇
  2003年   527篇
  2002年   428篇
  2001年   392篇
  2000年   337篇
  1999年   289篇
  1998年   211篇
  1997年   166篇
  1996年   136篇
  1995年   140篇
  1994年   87篇
  1993年   60篇
  1992年   65篇
  1991年   56篇
  1990年   66篇
  1989年   81篇
  1988年   9篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   5篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In this study, the separation of hydrogen from gas mixtures using a palladium membrane coupled with a vacuum environment on the permeate side was studied experimentally. The gas mixtures composed of H2, N2, and CO2 were used as the feed. Hydrogen permeation fluxes were measured with membrane operating temperature in the range of 320–380 °C, pressures on the retentate side in the range of 2–5 atm, and vacuum pressures on the permeate side in the range of 15–51 kPa. The Taguchi method was used to design the operating conditions for the experiments based on an orthogonal array. Using the measured H2 permeation fluxes from the Taguchi approach, the stepwise regression analysis was also employed for establishing the prediction models of H2 permeation flux, followed by the analysis of variance (ANOVA) to identify the significance and suitability of operating conditions. Based on both the Taguchi approach and ANOVA, the H2 permeation flux was mostly affected by the gas mixture composition, followed by the retentate side pressure, the vacuum degree, and the membrane temperature. The predicted optimal operating conditions were the gas mixture with 75% H2 and 25% N2, the membrane temperature of 320 °C, the retentate side pressure of 5 atm, and the vacuum degree of 51 kPa. Under these conditions, the H2 permeation flux was 0.185 mol s?1 m?2. A second-order normalized regression model with a relative error of less than 7% was obtained based on the measured H2 permeation flux.  相似文献   
2.
《Ceramics International》2022,48(12):16808-16812
Flash sintering has been reported in various ceramics. Nevertheless, anion and cation conductors exhibit different flash-sintering behaviors, and the interaction mechanism between the conductive species and the sintering environment has remained unclear. Herein, we report the flash-sintering phenomena of a typical cation conductor, Na3Zr2(SiO4)2(PO4) with anode region surrounded by air and NaNO3 environments. The results prove that the ionic behavior and joule heating distribution can be controlled by changing the electrode environment. Four possible scenarios describing the ion migration behavior and interaction with the environment are proposed for providing a guidance for controlling the ion interaction behavior during flash sintering.  相似文献   
3.
4.
B4C-TiB2 ceramics (TiB2 ranging 5~70 vol%) with Mo-Co-WC as the sintering additive were prepared by spark plasma sintering. In comparison with B4C-TiB2 without additive, the enhanced densification was evident in the sintered specimen with Mo-Co-WC additive. Core-rim structured grain was observed around TiB2 grains. The interface of the rim between TiB2 and B4C phases demonstrated different feature: the inner borderline of the rim exhibited a smooth feature, whereas a sharp curved grain boundary was observed between the rim and the B4C grain. The formation mechanism is discussed: the epitaxial growth of (Ti,Mo,W)B2 rim around the TiB2 core may occur as a result of the solid solution and dissolution-precipitation between TiB2 phase and the sintering additive. It was revealed that the fracture toughness increased as the content of TiB2 content increased, alongside the decreased hardness. B4C-30 vol% TiB2 specimen demonstrated the optimal combination of mechanical properties, reaching Vickers hardness of 24.3 GPa and fracture toughness of 3.33 MPa·m1/2.  相似文献   
5.
《Ceramics International》2022,48(20):30376-30383
In this study, α/β-Si3N4 composite ceramics with high hardness and toughness were fabricated by adopting two different novel ternary additives, ZrN–AlN–Al2O3/Y2O3, and spark plasma sintering at 1550 °C under 40 MPa. The phase composition, microstructure, grain distribution, crack propagation process and mechanical properties of sintered bulk were investigated. Results demonstrated that the sintered α/β-Si3N4 composite ceramics with ZrN–AlN–Al2O3 contained the most α phase, which resulted in a maximum Vickers hardness of 18.41 ± 0.31 GPa. In the α/β-Si3N4 composite ceramics with ZrN–AlN–Y2O3 additives, Zr3AlN MAX-phase and ZrO phase were found and their formation mechanisms were explained. The fracture appearance presented coarser elongated β-Si3N4 grains and denser microstructure when 20 wt% TiC particles were mixed into Si3N4 matrix, meanwhile, exhibited maximum mean grain diameter of 0.98 ± 0.24 μm. As a result, the compact α/β-Si3N4 composite ceramics containing ZrN–AlN–Y2O3 additives and TiC particles displayed the optimal bending strength and fracture toughness of 822.63 ± 28.75 MPa and 8.53 ± 0.21 MPa?m1/2, respectively. Moreover, the synergistic toughening of rod-like β-Si3N4 grains and TiC reinforced particles revealed the beneficial effect on the enhanced fracture toughness of Si3N4 ceramic matrix.  相似文献   
6.
In flash sintering experiments, the thermal history of the sample is key to understanding the mechanisms underlying densification rate and final properties. By combining robust temperature measurements with current-ramp-rate control, this study examined the effects of the thermal profile on the flash sintering of yttria-stabilized zirconia, with experiments ranging from a few seconds to several hours. The final density was maximized at slower heating rates, although processes slower than a certain threshold led to grain growth. The amount of grain growth observed was comparable to a similar conventional thermal process. The bulk electrical conductivity correlated with the maximum temperature and cooling rate. The only property that exhibited behavior that could not be attributed to solely the thermal profile was the grain boundary conductivity, which was consistently higher than conventional in flash sintered samples. These results suggest that, during flash sintering, athermal electric field effects are relegated to the grain boundary.  相似文献   
7.
《Ceramics International》2022,48(8):10921-10931
Coatings were obtained by vacuum electro-spark alloying (VESA), pulsed cathodic arc evaporation (PCAE), magnetron sputtering (MS) techniques and VESA-PCAE-MS hybrid technology using Cr3C2–NiAl electrodes. The structure of the coatings was analyzed using scanning and transmission electron microscopy, X-ray diffraction and energy-dispersive spectroscopy. Mechanical properties were determined by nanoindentation, while tribological properties were assessed using pin-on-disk tribometer. Corrosion resistance was estimated by voltammetry in 1 N H2SO4 and 3.5%NaCl solutions. Oxidation resistance tests were performed at 800°С in air. The VESA coating had the highest thickness, low friction coefficient and high wear resistance. PCAE coating demonstrated the highest hardness (24 GPa) and elastic recovery (59%), oxidation resistance and superior corrosion resistance both in 1 N H2SO4 (icorr = 70 μА/cm2) and 3.5%NaCl (icorr = 0.74 μА/cm2) solutions. The MS coating had average mechanical properties and low corrosion current density (71 μА/cm2) in 1 N H2SO4. Deposition of coatings using VESA-PCAE-MS hybrid technology led to an increase in corrosion and oxidation resistance at least by 1.5 times in comparison with the VESA coating.  相似文献   
8.
Through improved synthesis process, resistance reduction effect of (K0.5Bi0.5)TiO3 (KBT) doping in Y–Mn co-doped BaTiO3 (BT) lead free ceramics was investigated. By different doping methods (doping K2O, Bi2O3 and TiO2 or synthesized KBT), medium Curie temperature (around 130 °C) lead free BT ceramics were obtained with ultra-low resistivity (13.84 Ωcm) with a temperature maintaining process at 700 °C. In this contribution, effect of sintering process and doping methods is discussed in detail.  相似文献   
9.
《Ceramics International》2022,48(18):26022-26027
Aluminum nitride (AlN) is used a ceramic heater material for the semiconductor industry. Because extremely high temperatures are required to achieve dense AlN components, sintering aids such as Y2O3 are typically added to reduce the sintering temperature and time. To further reduce the sintering temperature, in this study, a low-melting-temperature glass (MgO–CaO–Al2O3–SiO2; MCAS) was used as a sintering additive for AlN. With MCAS addition, fully dense AlN was obtained by hot-press sintering at 1500 °C for 3 h at 30 MPa. The mechanical properties, thermal conductivity, and volume resistance of the sintered AlN–MCAS sample were evaluated and compared with those of a reference sample (AlN prepared with 5 wt% Y2O3 sintering aid sintered at 1750 °C for 8 h at 10 MPa). The thermal conductivity of AlN prepared with 0.5 wt% MCAS was 91.2 W/m?K, which was 84.8 W/m?K lower than that of the reference sample at 25 °C; however, the difference in thermal conductivity between the samples was only 14.2 W/m?K at the ceramic-heater operating temperature of 500 °C. The flexural strength of AlN–MCAS was 550 MPa, which was higher than that of the reference sample (425 MPa); this was attributed to the smaller grain size achieved by low-temperature sintering. The volume resistance of AlN–MCAS was lower than that of the reference sample in the range of 200–400 °C. However, the resistivity of the proposed AlN–MCAS sample was higher than that of the reference sample (500 °C) owing to grain-boundary scattering of phonons. In summary, the proposed sintering strategy produces AlN materials for heater applications with low production cost, while achieving the properties required by the semiconductor industry.  相似文献   
10.
Undoped and fluorine doped ZnO thin films were deposited onto glass substrates using successive ionic layer adsorption and reaction (SILAR) technique and then annealed at 350 °C in vacuum ambience. The F doping level was varied from 0 to 15 at% in steps of 5 at%. The XRD analysis showed that all the films are polycrystalline with hexagonal wurtzite structure and preferentially oriented along the (002) plane. Crystallite sizes were found to increase when 5 at% of F is doped and then decreased with further doping. It was seen from the SEM images that the doping causes remarkable changes in the surface morphology and the annealing treatment results in well-defined grains with an improvement in the grain size irrespective of doping level. All the films exhibit good transparency (>70%) after vacuum annealing. Electrical resistivity of the film was found to be minimum (1.32×10−3 Ω cm) when the fluorine doping level was 5 at%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号