首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55563篇
  免费   5679篇
  国内免费   4023篇
电工技术   6437篇
综合类   5116篇
化学工业   7150篇
金属工艺   4809篇
机械仪表   3483篇
建筑科学   5172篇
矿业工程   2419篇
能源动力   1659篇
轻工业   5198篇
水利工程   2493篇
石油天然气   1937篇
武器工业   451篇
无线电   2040篇
一般工业技术   4678篇
冶金工业   5279篇
原子能技术   343篇
自动化技术   6601篇
  2024年   265篇
  2023年   991篇
  2022年   1513篇
  2021年   1885篇
  2020年   2065篇
  2019年   1865篇
  2018年   1690篇
  2017年   1940篇
  2016年   2061篇
  2015年   2148篇
  2014年   3196篇
  2013年   3299篇
  2012年   3728篇
  2011年   4106篇
  2010年   3061篇
  2009年   3405篇
  2008年   2843篇
  2007年   3661篇
  2006年   3334篇
  2005年   2885篇
  2004年   2387篇
  2003年   1948篇
  2002年   1665篇
  2001年   1454篇
  2000年   1363篇
  1999年   1224篇
  1998年   959篇
  1997年   805篇
  1996年   717篇
  1995年   590篇
  1994年   475篇
  1993年   380篇
  1992年   345篇
  1991年   222篇
  1990年   159篇
  1989年   132篇
  1988年   101篇
  1987年   72篇
  1986年   54篇
  1985年   33篇
  1984年   48篇
  1983年   36篇
  1982年   43篇
  1981年   15篇
  1980年   21篇
  1979年   19篇
  1978年   11篇
  1977年   7篇
  1955年   3篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The article investigates the finite-time adaptive fuzzy control for a class of nonlinear systems with output constraint and input dead-zone. First, by skillfully combining the barrier Lyapunov function, backstepping design method, and finite-time control theory, a novel adaptive state-feedback tracking controller is constructed, and the output constraint of the nonlinear system is not violated. Second, the fuzzy logic system is used to approximate unknown function in the nonlinear system. Third, the finite-time command filter is introduced to avoid the problem of “complexity explosion” caused by repeated differentiations of the virtual control signal in conventional backstepping control schemes. Meanwhile, a new saturation function is added in the compensating signal for filter error to improve control accuracy. Finally, based on Lyapunov stability analysis, all the signals of the closed-loop are proved to be semi-globally uniformly ultimately bounded, and the tracking error converges to a small neighborhood region of the origin in a finite time. A simulation example is presented to demonstrate the effectiveness for the proposed control scheme.  相似文献   
2.
Mangiferin (MGF) is a phenolic compound isolated from mango, but its poor solubility significantly limits its use. In this study, MGF was embedded into the inner aqueous phase of W1/O/W2 emulsions. Firstly, the dissolution method of MGF was determined. MGF remained stable in solution with pH 13 at 30 min, and its solubility reached 10 mg mL−1. When the pH of MGF solutions was adjusted from pH 13 to pH 6, MGF did not immediately crystallise, providing sufficient time to construct the MGF-loaded W1/O/W2 emulsions. Subsequently, the MGF-loaded W1/O/W2 emulsions were constructed using polyglycerol polyricinoleate (PGPR) and calcium caseinate (CAS). The formation and stability of the W1/O/W2 emulsions were investigated. The MGF-loaded W1/O/W2 emulsions stabilised with 1% PGPR and 1% – 3% CAS exhibited a low viscosity, limited loading capacity, and poor stability. Conversely, the MGF-loaded W1/O/W2 emulsions stabilised by 3%PGPR–3%CAS exhibited optimal loading capacity (encapsulation efficiency = 95.31% and loading efficiency = 0.91%) and stability, which was attributed to the fact that high viscosity and gel state retarded the migration of inner aqueous phase. These results indicated that the W1/O/W2 emulsions stabilised by PGPR and CAS may be a potential alternative for encapsulating mangiferin.  相似文献   
3.
针对颗粒滚动摩擦作用对筒仓中玉米颗粒的力链空间分布进行研究,通过EDEM离散元软件建立筒仓模型与仿真玉米颗粒模型进行卸粮仿真模拟,并与筒仓卸料实验作流态对比,验证模型与仿真结果的准确性。通过对模拟仓进行切片观察和数据处理,对比分析了不同摩擦情况下力链的细观参数随时间演化规律。模拟结果表明:颗粒间摩擦系数越大,卸粮完成的最终时间越长;颗粒间滚动摩擦系数越小,颗粒由整体流转变为管状流的时间越早。对于有漏斗的筒仓来说,减小颗粒间摩擦会改变整体流和管状流之间的极限,从而增加产生管状流的面积。标准滚动摩擦系数下玉米颗粒在卸料过程中会出现起拱-塌陷效应;减小滚动摩擦,玉米颗粒卸料较稳定,未出现起拱的应力突增、以及拱塌陷的应力衰减;增大颗粒间滚动摩擦不但会增加拱效应,且出现成拱高度距离漏斗口更高。  相似文献   
4.
ABSTRACT

Absorbed-dose estimation is essential for evaluation of the radiation tolerance of minor-actinide-separation processes. We propose a dose-evaluation method based on radiation permeability, with comparisons of heterogeneous structures seen in the solvent-extraction process, such as emulsions forming in the mixture of the organic and aqueous phases. A demonstration of radiation-energy-transfer simulation is performed with a focus on the minor-actinide-recovery process from high-level liquid waste with the aid of the Monte Carlo radiation-transport code PHITS. The simulation results indicate that the dose absorbed by the extraction solvent from alpha radiation depends upon the emulsion structure, and that from beta and gamma radiation depends upon the mixer-settler-apparatus size. Non-negligible contributions of well-permeable gamma rays were indicated in terms of the plant operation of the minor-actinide-separation process.  相似文献   
5.
By choosing a triple block polymer, poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS), as the backbone and adopting a long side-chain double-cation crosslinking strategy, a series of SEBS-based anion-exchange membranes (AEMs) was successively synthesized by chloromethylation, quaternization, crosslinking, solution casting, and alkalization. The 70C16-SEBS-TMHDA membrane showed high OH conductivity (72.13 mS/cm at 80 °C) and excellent alkali stability (only 10.86% degradation in OH conductivity after soaking in 4-M NaOH for 1700 h at 80 °C). Furthermore, the SR was only 9.3% at 80 °C and the peak power density of the H2/O2 single cell was up to 189 mW/cm2 at a current density of 350 mA/cm2 at 80 °C. By introducing long flexible side chains into a polymer SEBS backbone, the structure of the hydrophilic–hydrophobic microphase separation in the membrane was constructed to improve the ionic conductivity. Additionally, network crosslinked structure improved dimensional stability and mechanical properties.  相似文献   
6.
Developing the thermal stability of metal-based ceramic composites or their films has always been challenging and bottlenecks for the utilization of energy. In this paper, the novel mesh-like functional Al doped-MoO3 nanocomposite film with even distribution and high purity was firstly fabricated by the high-efficiency electrophoretic deposition and surface modification. The optimal suspension turned out to be the mixture of isopropanol and the additives of polyethyleneimine and benzoic acid. The microtopography, crystalline structure, environmental resistance and thermal stability were analyzed by field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX), X-ray diffractometer (XRD), exposure and droplet-impacting test, DSC analysis and ignition test, respectively. The water contact angle and sliding angle of product can reach ~170° and <1°, indicating the excellent anti-wetting property. In addition, the high heat-release (~3180 J/g) of product all kept almost unchangeable after six months exposure experiments, demonstrating the outstanding thermostability. The exquisite design idea here can perfectly match microelectromechanical system (MEMS), providing the valuable reference for fabricating other metal-based high-energy composites with long lifespan for real industrial applications.  相似文献   
7.
Aromatic and functional polymers with processibility derived from biobased starting materials are prerequisite considering sustainable society. Poly(2,5-benzimidazole)s are rigid-rod polymers to show ultrahigh thermal stability such as flame retardance, while usually suffer from poor solubility. Here, poly(benzimidazole-co-amide)s are synthesized from two biobased monomers, 3,4-diaminobenzoic acid and a semirigid comonomer, 4-aminohydrocinnamic acid. The copolymers with an amide composition of 80 mol% and higher are soluble in widely used polar solvents to fabricate the films keeping high flame retardance, which is comparable with popular high-performance polymers such as aromatic polyimides, polyetheretherketone, polyphenylene sulfide, etc.  相似文献   
8.
The influence of cementite spheroidization on the impact toughness and electrochemical properties of a high-carbon steel has been thoroughly investigated in this study. Heavy warm rolling, followed by 2 h of annealing, has resulted in near-complete spheroidization, leading to a microstructure consisting of nano-cementite globules dispersed in the ultrafine-grained ferritic matrix. The Charpy impact test exhibited superior impact toughness with increased spheroidization. It is validated by the presence of abundant dimples in the fractographs of spheroidized specimens, in contrast to the as-received one that experienced a brittle failure due to its lamellar pearlitic structure. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) carried out in a 3.5% NaCl solution revealed that the corrosion resistance of the alloy gets improved with the increase in the degree of spheroidization. This is attributed to the lower susceptibility of the spheroidized specimen to microgalvanic corrosion owing to the minimum area of contact between nano-spheroidized cementite and ferrite, as elucidated with the help of EIS results aided by equivalent electrical circuit model.  相似文献   
9.
Micro-combustor is a portable power device that can provide energy efficiently, heat recirculating is considered to be an important factor affecting the combustion process. For enhancing the heat recirculating and improving the combustion stability, we proposed a heat-recirculating micro-combustor embedded with porous media, and the numerical simulation was carried out by CFD software. In this paper, the effect of porous media materials, thickness and inlet conditions (equivalence ratio, inlet velocity) on the temperature distribution and exhaust species in the micro combustor are investigated. The results showed that compared with the micro combustor without embedded porous media (MCNPM), micro-combustor embedded with porous media (MCEPM) can improve the temperature uniformity distribution in the radial direction and strengthen the preheating capacity. However, it is found that the embedding thickness of porous media should be reasonably arranged. Setting the thickness of porous media to 15 mm, the combustor can obtain excellent comprehensive capacity of steady combustion and heat recirculating. Compared the thermal performance of Al2O3, SiC, and ZrO2 porous media materials, indicating that SiC due to its strong thermal conductivity, its combustion stabilization and heat recirculating capacity are obviously better than that of Al2O3 and ZrO2. With the porous media embedded in the micro combustor, the combustion has a tempering limit of more than 10 m/s, and the flame is blown out of the porous media area over 100 m/s. The reasonable equivalence ratio of CH4/air combustion should be controlled within the range of 0.1–0.5, and “super-enthalpy combustion” can be realized.  相似文献   
10.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号