首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22115篇
  免费   1753篇
  国内免费   1386篇
电工技术   1251篇
综合类   1373篇
化学工业   2159篇
金属工艺   2676篇
机械仪表   1192篇
建筑科学   1077篇
矿业工程   920篇
能源动力   597篇
轻工业   1261篇
水利工程   166篇
石油天然气   740篇
武器工业   94篇
无线电   3878篇
一般工业技术   4358篇
冶金工业   2569篇
原子能技术   106篇
自动化技术   837篇
  2024年   51篇
  2023年   207篇
  2022年   355篇
  2021年   517篇
  2020年   587篇
  2019年   543篇
  2018年   513篇
  2017年   724篇
  2016年   761篇
  2015年   711篇
  2014年   1203篇
  2013年   1305篇
  2012年   1639篇
  2011年   1758篇
  2010年   1287篇
  2009年   1312篇
  2008年   1241篇
  2007年   1540篇
  2006年   1395篇
  2005年   1198篇
  2004年   1013篇
  2003年   896篇
  2002年   842篇
  2001年   724篇
  2000年   639篇
  1999年   462篇
  1998年   372篇
  1997年   290篇
  1996年   251篇
  1995年   225篇
  1994年   175篇
  1993年   136篇
  1992年   93篇
  1991年   68篇
  1990年   54篇
  1989年   36篇
  1988年   33篇
  1987年   13篇
  1986年   8篇
  1985年   10篇
  1984年   11篇
  1983年   7篇
  1982年   7篇
  1981年   11篇
  1980年   4篇
  1979年   6篇
  1978年   5篇
  1976年   5篇
  1975年   3篇
  1974年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(11):15207-15217
SCAPS solar cell simulation program was applied to model an inverted structure of perovskite solar cells using Cu-doped Ni1-xO thin films as hole transport layer. The Cu-doped Ni1-xO film were made by co-sputtering deposition under different deposition conditions. By increasing the amount of the Cu-dopant, the film crystallinity enhanced whereas the bandgap energy decreased. The transmittance of the thin films decreased significantly by increasing the sputtering power of copper. High quality, uniform, compact, and pin-hole free films with low surface roughness were achieved. The structural, chemical, surface morphology, optical, electrical, and electronic properties of the Cu doped Ni1-xO films were used as input parameters in the simulation of Pb-based (MAPbI3-xClx) and Pb-free (MAGeI3) perovskite solar cells. Simulation results showed that the performance of both Pb-based and Pb-free perovskite solar cell devices significantly enhanced with Cu-doped Ni1-xO film. The highest power conversion efficiency (PCE) for the Pb-free perovskite solar cell is 8.9% which is lower than the highest PCE of 17.5% for the Pb-based perovskite solar cell.  相似文献   
2.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
3.
《Ceramics International》2022,48(14):20000-20009
Zinc oxide (ZnO) offers a major disadvantage of asymmetry doping in terms of reliability, stability, and reproducibility of p-type doping, which is the main hindrance in realization of optoelectronic devices. The problem is even more complicated due to formation of various native defects in unintentionally doped n-type ZnO. The realization of p-type conductivity in doped ZnO requires an in-depth understanding of the formation of an effective shallow acceptor, as well as donor-acceptor compensation. Photophysical properties such as photoconductivity along with photoluminescence (PL) studies have unprecedentedly and effectively been utilized in this work to monitor the evolution of various in-gap defects. Phosphorus (P) doped ZnO thin films have been grown by RF magnetron sputtering under various Ar to O2 gas ratios to investigate the effect of O2 on the donor-acceptor compensation by comprehensive photoconductivity measurements supported by the PL studies. Initial elemental analyses indicate presence of abundant zinc vacancies (VZn) in O-rich ambience. The results predict that P sits in the zinc (Zn) site rather than the oxygen (O) site causing the formation of PZn–2VZn acceptor-like defects, which compensates the donor defects in P doped ZnO films. Photocurrent spectra uniquely reveal presence of more oxygen vacancies (VO) defects states in lower O2 flow, which gets compensated with an increase in the O2 flow. Successive photocurrent transients indicate probable presence of more VO in the films grown with lower O2 flow and more VZn in higher O2 flow. Overall the photosensitivity measurements clearly present that O-rich ambience expedites the formation of acceptor defects which are compensated, thereby lowering the dark current and enhancing the ultraviolet photosensitivity.  相似文献   
4.
在80 MHz~1 GHz频段,单个功率管输出功率能达到100 W以上,为研制输出功率400 W的功率放大器,文中设计了四路功率合成器。该合成器需要实现功率容量大、工作频带宽、体积小的设计目标。在功率容量方面,文中采用悬置带状线结构,其功率容量远远大于微带线结构;在工作频带方面,采用切比雪夫九节阻抗变换器,将工作带宽拓宽为80 MHz~1 GHz;在体积方面,文中合成器的功率合成部分采用Y型节级联实现四路功率合成,阻抗变换部分采用切比雪夫阻抗变换器进行阻抗变换,该结构相较于磁环巴伦功率合成器,不但具有损耗小、平坦度高的优点,而且通过将阻抗变换器设计成曲折的形状,进一步缩小了合成器体积。仿真与实测结果显示该合成器在80 MHz~1 GHz范围内还具有较高的平坦度,合成效率可达90%以上。  相似文献   
5.
Magnetron sputtered low-loading iridium-ruthenium thin films are investigated as catalysts for the Oxygen Evolution Reaction at the anode of the Proton Exchange Membrane Water Electrolyzer. Electrochemical performance of 50 nm thin catalysts (Ir pure, Ir–Ru 1:1, Ir–Ru 1:3, Ru pure) is tested in a Rotating Disk Electrode. Corresponding Tafel slopes are measured before and after the CV-based procedure to compare the activity and stability of prepared compounds. Calculated activities prior to the procedure confirm higher activity of ruthenium-containing catalysts (Ru pure > Ir–Ru 1:3 > Ir–Ru 1:1 > Ir pure). However, after the procedure a higher activity and less degradation of Ir–Ru 1:3 is observed, compared to Ir–Ru 1:1, i.e. the sample with a higher amount of unstable ruthenium performs better. This contradicts the expected behavior of the catalyst. The comprehensive chemical and structural analysis unravels that the stability of Ir–Ru 1:3 sample is connected to RuO2 chemical state and hcp structure. Obtained results are confirmed by measuring current densities in a single cell.  相似文献   
6.
《Ceramics International》2020,46(4):4148-4153
The ferroelectric photovoltaic (FPV) effect obtained in inorganic perovskite ferroelectric materials has received much attention because of its large potential in preparing FPV devices with superior stability, high open-circuit voltage (Voc) and large short-circuit current density (Jsc). In order to obtain suitable thickness for the ferroelectric thin film as light absorption layer, in which, the sunlight can be fully absorbed and the photo-generated electrons and holes are recombined as few as possible, we prepare Pb0.93La0.07(Zr0.6Ti0.4)0.9825O3 (PLZT) ferroelectric thin films with different layer numbers by the sol-gel method and based on these thin films, obtain FPV devices with FTO/PLZT/Au structure. By measuring photovoltaic properties, it is found that the device with 4 layer-PLZT thin film (~300 nm thickness) exhibits the largest Voc and Jsc and the photovoltaic effect obviously depends on the value and direction of the poling electric field. When the device is applied a negative poling electric field, both the Voc and Jsc are significantly higher than those of the device applied the positive poling electric field, due to the depolarization field resulting from the remnant polarization in the same direction with the built-in electric field induced by the Schottky barrier, and the higher the negative poling electric field, the larger the Voc and Jsc. At a -333 kV/cm poling electric field, the FPV device exhibits the most superior photovoltaic properties with a Voc of as high as 0.73 V and Jsc of as large as 2.11 μA/cm2. This work opens a new way for developing ferroelectric photovoltaic devices with good properties.  相似文献   
7.
Hot-dip galvanizing is a standard technology to produce coated steel strips. The primary objective of the galvanizing process is to establish a homogeneous zinc layer with a defined thickness. One condition to achieve this objective is a uniform transverse distance between the strip and the gas wiping dies, which blow off excessive liquid zinc. Therefore, a flat strip profile at the gas wiping dies is required. However, strips processed in such plants often exhibit residual curvatures which entail unknown flatness defects of the strip. Such flatness defects cause non-uniform air gaps and hence an inhomogeneous zinc coating thickness. Modern hot-dip galvanizing lines often use electromagnets to control the transverse strip profile near the gas wiping dies. Typically, the control algorithms ensure a flat strip profile at the electromagnets because the sensors for the transverse strip displacement are also located at this position and it is unfeasible to mount displacement sensors directly at the gas wiping dies. This brings along that in general a flatness defect remains at the gas wiping dies, which in turn entails a suboptimal coating.In this paper, a model-based method for a feedforward control of the strip profile at the position of the gas wiping dies is developed. This method is based on a plate model of the axially moving strip that takes into account the flatness defects in the strip. First, an estimator of the flatness defects is developed and validated for various test strips and settings of the plant. Using the validated mathematical model, a simulation study is performed to compare the state-of-the-art control approach (flat strip profile at the electromagnets) with the optimization-based feedforward controller (flat strip profile at the gas wiping dies) proposed in this paper. Moreover, the influence of the distance between the gas wiping dies and the electromagnets is investigated in detail.  相似文献   
8.
By mans of a chemical synthesis technique stoichiometric CdTe-nanocrystals thin films were prepared on glass substrates at 70 °C. First, Cd(OH)2 films were deposited on glass substrates, then these films were immersed in a growing solution prepared by dissolution of Te in hydroxymethane sulfinic acid to obtain CdTe. The structural analysis indicates that CdTe thin films have a zinc-blende structure. The average nanocrystal size was 19.4 nm and the thickness of the films 170 nm. The Raman characterization shows the presence of the longitudinal optical mode and their second order mode, which indicates a good crystalline quality. The optical transmittance was less than 5% in the visible region (400–700 nm). The compositional characterization indicates that CdTe films grew with Te excess.  相似文献   
9.
摘要:为了研究300M超高强钢在中性盐雾环境中的腐蚀行为及腐蚀机制,采用失重法,宏观、微观腐蚀形貌分析,三维表面轮廓分析及电化学分析的研究方法,来表征腐蚀实验现象并进行分析。结果表明:300M超高强钢在中性盐雾环境中的腐蚀产物为FeOOH、Fe2O3、Fe(OH)3和Fe3O4;腐蚀速率随着腐蚀时间逐渐降低,腐蚀后期(72h)腐蚀速率降低50%;腐蚀初期以点蚀为主,点蚀坑通过横向扩展,逐渐发展为后期的均匀腐蚀,腐蚀表面形貌呈沟壑状;外腐蚀层对基体的保护能力很弱,Cr元素在锈层靠近基体的一侧偏聚使内腐蚀层具有一定的抗腐蚀性。  相似文献   
10.
川西彭州地区三叠系雷口坡组雷四上亚段潮坪相薄储层识别难度极大。围绕如何从复合地震强反射中区分并识别上、下两套储层面临的地球物理难题,采用先“分”后“合”的研究思路,基于实际地层结构及不同储层叠加样式建立正演模型,利用全波场波动方程正演模拟技术,剖析了不同主频条件下薄储层的地震响应特征,通过波形差异化分析,从复合地震响应中“剥离”出了两套储层所引起的地震响应特征及变化规律,明确了两套储层在不同频带下的地震识别标志和识别方法,为该区强反射界面干扰下两套薄互层储层辨识机理分析及精准预测奠定了基础。基于不同频带下薄储层辨识机理的分析结果,定性预测了薄储层平面展布,提出了深层潮坪相薄储层识别和预测难题的解决方案,为该区地震资料品质评价、面向薄储层的地震采集技术设计、地震资料处理及薄储层预测提供了依据和指导。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号