首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4593篇
  免费   219篇
  国内免费   162篇
电工技术   45篇
综合类   116篇
化学工业   1376篇
金属工艺   522篇
机械仪表   89篇
建筑科学   43篇
矿业工程   52篇
能源动力   332篇
轻工业   98篇
石油天然气   31篇
武器工业   7篇
无线电   553篇
一般工业技术   1476篇
冶金工业   115篇
原子能技术   60篇
自动化技术   59篇
  2024年   7篇
  2023年   71篇
  2022年   109篇
  2021年   149篇
  2020年   151篇
  2019年   127篇
  2018年   141篇
  2017年   168篇
  2016年   165篇
  2015年   149篇
  2014年   230篇
  2013年   257篇
  2012年   260篇
  2011年   434篇
  2010年   304篇
  2009年   342篇
  2008年   261篇
  2007年   370篇
  2006年   280篇
  2005年   242篇
  2004年   132篇
  2003年   160篇
  2002年   126篇
  2001年   90篇
  2000年   82篇
  1999年   28篇
  1998年   41篇
  1997年   23篇
  1996年   20篇
  1995年   14篇
  1994年   11篇
  1993年   6篇
  1992年   8篇
  1991年   7篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1984年   2篇
  1979年   2篇
排序方式: 共有4974条查询结果,搜索用时 15 毫秒
1.
Pathogens pose a serious challenge to environmental sanitation and a threat to public health.The frequent use of chemicals for sterilization in recent years has not only caused secondary damage to the environment but also increased pathogen resistance to drugs,which further threatens public health.To address this issue,the use of non-chemical antibacterial means has become a new trend for environmental disinfection.In this study,we developed red phosphorus nanoparticles(RPNPs),a safe and degradable photosensitive material with good photocatalytic and photothermal properties.The red phosphorus nanoparticles were prepared using a template method and ultrasonication.Under the irradiation of simulated sunlight for 20 min,the RPNPs exhibited an efficiency of 99.98%in killing Staphylococcus aureus due to their excellent photocatalytic and photothermal abilities.Transmission electron microscopy and ultraviolet–visible spectroscopy revealed that the RPNPs exhibited degradability within eight weeks.Both the RPNPs and their degradation products were nontoxic to fibroblast cells.Therefore,such RPNPs are expected to be used as a new type of low-cost,efficient,degradable,biocompatible,and eco-friendly photosensitive material for environmental disinfection.  相似文献   
2.
《Ceramics International》2021,47(22):31886-31893
In this contribution, SnFe2O4 nanoparticles were prepared by the solvothermal method, the structural properties were performed using X-Ray Diffraction (DRX) to prove the success of tin ferrite formation and to determine de crystals parameters. The size and morphological study were build using Scanning Electron Microscopy (SEM) and Transmission Electron microscopy (TEM), the results showed that the size of particles is uniform with a range of particles (5–7 nm). The magnetic properties were carried out using the SQUID device, the SnFe2O4 nanoparticles have a magnetic transition at 750 K. In addition, the hysteresis loops at low temperature displayed Ms and Mr equals to 23 emu/g and 6 emu/g, respectively. The magnetoresistance properties were investigated, the SnFe2O4 nanoparticles present a large magnetoresistance effect (80%). The experimental results are supplemented by model calculations utilizing density functional theory and Monte-Carlo simulations.  相似文献   
3.
In this study, silica based slurries for stereolithographic printing of glass structures are developed and characterized. Stereolithography has the potential to print complex structures with high resolution. Therefore, acrylate based photocurable slurries have been developed and their viscosities are examined as a function of the solid loading. A critical shear rate can be derived, which must not be exceeded during the printing process. Therefore, rheological characterizations provide important insights into the printing process and the ability to produce samples with precise structures. Other properties such as polymerization time and curability kinetic were investigated with time dependent attenuated total reflection infrared spectroscopy (ATR-IR). Afterwards, the slurries were printed on a commercial printer operating with visible light. For debinding the printed green bodies, the decomposition temperatures were derived from thermogravimetric analysis in order to obtain stable and transparent samples.  相似文献   
4.
5.
The light scattering, harvesting and adsorption effects in dye-sensitized solar cells (DSSCs) are studied by preparation of coated carbon nanotubes (CNTs) with TiO2 and Zr-doped TiO2 nanoparticles in the forms of mono- and double-layer cells. X-ray diffraction (XRD) analysis reveals that the phase composition of Zr-doped TiO2 electrode is a mixture of anatase and rutile phases with major rutile content, whereas it is the same mixture with major anatase content for coated CNTs with TiO2. Furthermore, the average crystallite size of Zr-doped TiO2 electrode is slightly decreased with Zr introduction. Field emission scanning electron microscope (FE-SEM) images show that the porosity of Zr-doped TiO2 electrodes is higher than that of undoped electrode, enhancing dye adsorption. UV–visible spectroscopy analysis reveals that the absorption onset of Zr-doped TiO2 electrodes is slightly shifted to longer wavelength (the red-shift) in comparison with that of undoped TiO2 electrode. Moreover, the band gap energy of TiO2 nanoparticles is decreased by Zr introduction, enhancing light absorption. It is found that electron injection of monolayer TiO2 electrode is improved by introduction of 0.025 mol% Zr, resulted in enhancement of its power conversion efficiency (PCE) up to 6.81% compared with 6.17% for pure TiO2 electrode. Moreover, electron transport and light scattering are enhanced by incorporation of 0.025 wt% coated CNTs with TiO2 in the over-layer of double layer electrode. Therefore, double layer solar cell composed of 0.025 mol% Zr-doped TiO2 nanoparticles as the under-layer and mixtures of these nanoparticles and 0.025 wt% coated CNTs with TiO2 as the over-layer shows the highest PCE of 8.19%.  相似文献   
6.
7.
Successful fabrication of glass-based hybrid nanocomposites (GHNCs) incorporating Ag, core-shell CdSe/CdS and CdSxSe1?x nanoparticles (NPs) is herein reported. Both metallic (Ag) and semiconductor (CdSe/CdS) NPs were pre-synthesized, suspended in colloids and added into the sol-gel reaction medium which was used to fabricate the GHNCs. During fabrication of the nanocomposites a fraction (20–60%) of core-shell CdSe/CdS NPs was alloyed into CdSxSe1?x (0.20 < x < 0.35) NPs without changing morphology. Modulation of in situ alloying is possible via the relative content of organics added into the sol-gel protocol. Within colloids Ag (core-shell CdSe/CdS) NPs presented average diameter and polydispersity index of 49.5 nm (4.2 nm) and 0.41 (0.21), respectively. On the other hand, the Ag (core-shell CdSe/CdS) NPs’ average diameter and polydispersity index assessed from the GHNCs were respectively 51.5 nm (4.1 nm) and 0.43 (0.25), revealing negligible aggregation of the nanophases within the glass template. The new GHNCs herein introduced presented two independent excitonic transitions associated to homogenously dispersed semiconductor NPs, peaking around 420 nm (core-shell CdSe/CdS) and 650 nm (CdSxSe1?x) and matching the plasmonic resonance (Ag NPs) in the 400–500 nm range. We envisage that the new GHNCs represent very promising candidates for superior light manipulation while illuminated with multiple laser beams in quantum interference-based devices.  相似文献   
8.
A novel synthetic route has been proposed to prepare hausmannite nanoparticles. The synthetic route comprises an iron mediated constant current cathodic electrodeposition of manganite and heat treatment of the latter to obtain hausmannite. The obtained nanostructures have been characterized using X-ray Diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX) and Fourier transform Infrared Spectrometry (FTIR). The role of iron in the formation of manganite precursor has been studied by cyclic voltammetry (CV) and differential thermal analysis (DTA). A formation mechanism based on iron mediated formation of Mn3+ and subsequent cathodic reduction of the disproportionated products has been proposed accordingly. The prepared nanoparticles exhibited specific capacitance of 143 F g−1 in 0.5 M Na2SO4 solution. The retained specific capacity was 87% after 2000 cycles.  相似文献   
9.
Formation of cobalt sulfide hollow nanocrystals through a mechanism similar to the Kirkendall Effect has been investigated in detail. It is found that performing the reaction at > 120 °C leads to fast formation of a single void inside each shell, whereas at room temperature multiple voids are formed within each shell, which can be attributed to strongly temperature‐dependent diffusivities for vacancies. The void formation process is dominated by outward diffusion of cobalt cations; still, the occurrence of significant inward transport of sulfur anions can be inferred as the final voids are smaller in diameter than the original cobalt nanocrystals. Comparison of volume distributions for initial and final nanostructures indicates excess apparent volume in shells, implying significant porosity and/or a defective structure. Indirect evidence for fracture of shells during growth at lower temperatures was observed in shell‐size statistics and transmission electron microscopy images of as‐grown shells. An idealized model of the diffusional process imposes two minimal requirements on material parameters for shell growth to be obtainable within a specific synthetic system.  相似文献   
10.
We report a general template strategy for rational fabrication of a new class of nanostructured materials consisting of multicore shell particles. Our approach is demonstrated by encapsulating Au or Pt nanoparticles in silica shells. Other superstructures of these hollow shells, like dimers, trimers, and tetramers can also be formed by nanoparticle‐mediated self‐assembly. We have also used the as‐prepared multicore Au–silica hollow particles to perform the first studies of Ostwald ripening in confined microspace, in which chloride was found to be an efficient mediating ligand. After treatment with aqua regia, Au–Cl complex is formed inside the shell, and is found to be very active under in situ transmission electron microscopy observations while confined in a microcell. This aspect of the work is expected to motivate further in situ studies of confined crystal growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号