首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
  国内免费   1篇
电工技术   1篇
化学工业   23篇
金属工艺   3篇
机械仪表   1篇
一般工业技术   2篇
自动化技术   1篇
  2015年   1篇
  2013年   29篇
  2004年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
1.
《Advanced Robotics》2013,27(8):859-878
We are trying to induce a quadruped robot to walk dynamically on irregular terrain by using a neural system model. In this paper, we integrate several reflexes, such as a stretch reflex, a vestibulospinal reflex and extensor/flexor reflexes, into a central pattern generator (CPG). We try to realize adaptive walking up and down a slope of 12°, walking over an obstacle 3 cm in height, and walking on terrain undulation consisting of bumps 3 cm in height with fixed parameters of CPGs and reflexes. The success in walking on such irregular terrain in spite of stumbling and landing on obstacles shows that the control method using a neural system model proposed in this study has the ability for autonomous adaptation to unknown irregular terrain. In order to clarify the role of a CPG, we investigate the relation between parameters of a CPG and the mechanical system by simulations and experiments. CPGs can generate stable walking suitable for the mechanical system by receiving inhibitory input as sensory feedback and generate adaptive walking on irregular terrain by receiving excitatory input as sensory feedback. MPEG footage of these experiments can be seen at: http://www.kimura.is.uec.ac.jp.  相似文献   
2.
The surface treatment of glass beads, chosen as a model filler, was carried out using four different silane coupling agents with multilayer coverage. For this purpose, silanes having an aminopropyl or a methacryloxypropyl group as an organofunctional group with di- or tri-alkoxy structures were used. The amount of silane detected on the bead surface was four to six times that required for a monolayer coverage. The topography of the silane layer on the bead surface was observed using an atomic force microscope. The topography was strongly affected by the composition of the silane solution and the number of alkoxy groups in the silane. The effects of the organofunctional group and the number of alkoxy groups of the silanes on the mechanical properties of bead-filled poly(vinyl chloride), chosen as a typical ductile polymer, were investigated. A higher yield stress was observed for the silane with an aminopropyl group than for that with a methacryloxypropyl group. Furthermore, for each organofunctional group, the yield stress was higher for the silane with a dialkoxy structure than for that with a trialkoxy structure. However, their effects on the elongation-at-break were contrary to the above tendencies.  相似文献   
3.
Polymeric electronic packages subjected to standard Joint Electron Device Engineering Council (JEDEC) reliability testing are known to exhibit weakening and failures at the polymeric adhesive interfaces. Coupling agents are typically used as additives in epoxy-based materials to improve package reliability. Coupling agent chemistry and environment conditions, including pH, temperature and applied stress, are known factors that affect the rate of adhesion degradation and jeopardize the long-term reliability of the package. In this study, the subcritical interfacial debonding process is described. The debonding rates of polymers with silane, titanate and zirconate coupling agents were characterized at different temperatures by shear fracture tests and tapered double cantilever beam tests under mechanical loading and simultaneous exposure to controlled acidic environments. An analytical procedure was developed to delineate the material parameters governing adhesion degradation. Elevated temperature and acidity were shown to have a strong effect on package reliability, but mechanical loading was found to have a minimal effect on the rate of adhesion degradation. The effects of the JEDEC testing conditions on interfacial bond degradation are discussed using the chemical kinetic model.  相似文献   
4.
Abstract

A multi-component multi-phase micro-segregation model was developed to cope with eutectic transformations of ductile iron, assuming mixed dendritic–globular solidification morphology. Solute partitioning is calculated by an equilibrium assumption at the interfaces using commercial CALPHAD software. Time-sensitive micro-segregation patterns and phase fractions are solved by the micro-segregation model. The development of fraction liquid over temperature with time was compared to Gulliver–Scheil simulations for a model with and without cross-diffusion. The micro-segregation model was coupled to a commercial process simulations tool to deal with interaction effects between material and process scale during solidification of a benchmark test casting made of EN-GJSA-X NiCr 20–2. The precipitation kinetics of phases, especially of graphite, is of particular interest during solidification of ductile iron, due to feeding effects. The coupling procedure as well as important aspects during solidification of ductile iron will be explained.  相似文献   
5.
The hydrolytic stability of various silane combinations and their effects on biomechanical properties and water sorption of an experimental dental composite made of bis-GMA and TEGDMA and silane-treated fillers were evaluated. Four silane coupling agents and their blends with a cross-linker silane were used as coupling agents for the 0.7-μm BaSiO3 fillers. The silanization was carried out in toluene containing 1% (v/v) of one of the four following organofunctional silane coupling agents: 3-acryloxypropyltrimethoxysilane, 3methacryloxypropyltrimethoxysilane, 3-styrylethyltrimethoxysilane and 3-isocyanatopropyltriethoxysilane. Blends of these functional silanes with 1% (v/v) of a cross-linker silane, 1,2- bis -(triethoxysilyl)ethane were also used for silanization. Composites were prepared by mixing 5.00 g Ba-glass filler with 2.00 g of a resin mixture consisting of bis-GMA (58.8 wt%) and TEGDMA (39.2 wt%) in a high-speed mixer. Threepoint bending test specimens (2.0 mm × 2.0 mm × 25.0 mm) were fabricated (n= 8) in a mould and photo-polymerized. The degree of conversion was measured with FT-IR. Biomechanical testing was carried out according to the ISO 10477 standard. Specimens were tested (flexural strength) after 30 days of water storage (37° C, distilled water). Water sorption and solubility (in wt%) were also measured on 1, 2, 3, 5, 7, 14, 21 and 30 days in water storage. Statistical analysis with ANOVA showed that the highest flexural strength was obtained when 3-acryloxypropyltrimethoxysilane + 1,2- bis -(triethoxysilyl)ethane (100.5 MPa; SD, 25.7 MPa) was used in the silanization step, and the lowest was obtained when 3isocyanatopropyltriethoxysilane + 1,2- bis-(triethoxysilyl)ethane (28.9 MPa; SD, 8.8 MPa) was used. The three-point bending strength was significantly affected by the functionality of the main silane tested (p< 0.05), but not by the addition of the cross-linker silane ( p> 0.05). The composite that had been silanized with 3-isocyanatopropyltriethoxysilane had the greatest amount of water uptake (1.75%), and the composite silanized with 3-methacryloxypropyltrimethoxysilane + 1,2- bis-(triethoxysilyl)ethane had the least (1.08%). In conclusion, selection of the functional silane monomer can be a significant factor in developing filled resin composites in dentistry.  相似文献   
6.
《应用陶瓷进展》2013,112(5):261-267
Abstract

A new route to interfacial bonding between ceramic and matrix in biocomposites is identified. A tailored allyl phosphonic acid is used as a coupling agent bound to the surface of a bioceramic to form a 'grafted' calcium phosphate (CAP). The allyl phosphonic acid coupling agent is synthesised by reaction of allyl halide and trialkyl phosphite. Successful synthesis was confirmed by nuclear magnetic resonance and Fourier transform infrared spectroscopy (FTIR). The allyl phosphonic acid was incorporated onto calcium phosphate using a wet chemical coprecipitation synthesis route. The resulting 'grafted' CAP was characterised using FTIR coupled with photoacoustic sampling, and Fourier transform Raman spectroscopy (FTR). The spectroscopic data suggest an interaction between the allyl phosphonic acid and calcium phosphate resulting from observed reductions in intensity of the hydroxyl (3570 cm?1) and phosphate ν 3 (1030 cm?1) peaks. The continued presence of C=C functionality on the surface of the grafted CAP was indicated by FTIR and FTR spectra (peaks at 1650 and 1635 cm?1 respectively) and confirmed by X-ray photoelectron spectroscopy (XPS). On the basis of these results, it is concluded that grafted CAP may be used to produce a chemically bonded composite with superior mechanical properties.  相似文献   
7.
The group contribution method of UNIFAC is used to investigate the influence on adhesion of thermodynamic compatibility between the filler surface and the polymeric matrix in filled polymeric composites. Compatibility is enhanced between polymers and mineral surfaces through the use of silane coupling agents of varying chemistry. In this study, glass beads were treated with ten different organofunctional silanes intended to induce differences in interfacial strength. Interfacial strength measurements were obtained from tests in which single, silane-treated glass beads were embedded in rectangular poly(vinyl butyral) specimens subjected to uni-axial stress until interfacial failure occurred at one of the poles of the sphere. The UNIFAC method was used to estimate the Gibbs free energies of mixing using the chemical structure of the polymer repeat unit and each of the silane organofunctional groups, and these values were correlated with the measured interfacial strengths. The results indicate that enhanced interfacial strength corresponds to systems with more favorable thermodynamic mixing.  相似文献   
8.
Ultra-high modulus polyethylene (UHMPE) fiber was treated with oxygen plasma and a silane coupling agent in order to improve the interfacial adhesion between the UHMPE fiber and vinylester resin. The oxygen plasma and γ-methylmethacryloxypropyltrimethoxysilane (γ-MPS)-treated UHMPE fiber/vinylester composites showed a slightly higher interlaminar shear strength than the oxygen plasma-treated UHMPE fiber/vinylester composites. The interfacial adhesion of the oxygen plasma-treated UHMPE fiber/vinylester composites in this study is mainly due to mechanical interlocking between the micropits formed by the oxygen plasma treatment and the vinylester resin. The γ-MPS molecules adsorbed onto the UHMPE fiber surface neither affected the morphology of the UHMPE fiber surface, nor reduced the extent of mechanical interlocking. The improved interfacial adhesion by the γ-MPS treatment is due to enhanced wettability and chemical interaction through the chemically adsorbed γ-MPS molecules, as detected by Fourier-transform infrared (FT-IR) spectroscopy. The γ-MPS molecules adsorbed onto the ultra-high molecular weight polyethylene (UHMWPE) plate surface also reduced the aging effect of the oxygen plasma-treated UHMWPE surface.  相似文献   
9.
A simple spray method using a plain orifice atomizer has been developed for depositing γ-aminopropyltriethoxysilane (APS) from solutions in water and in methanol onto copper surfaces. The evaporative patterns of the sprayed droplets were studied to determine the distribution of deposited APS and the percent coverage of the surface. The peel strengths between copper foil and epoxy resin were measured with and without APS deposition. It was shown that the application of APS resulted in a considerable increase in interfacial adhesion. APS applied from a 1 wt% solution in methanol resulted in a higher peel strength than when applied from a 1 wt% aqueous solution; the opposite was true with 0.2 wt% APS solutions, indicating a trade-off between deposited APS film thickness and surface coverage. In all cases, a higher concentration of APS gives a higher peel strength. APS was very effective when chemisorption occurred at the surface but much less effective when only physisorption took place. A study of the fracture surfaces showed cohesive failure inside the epoxy layer, and that the deposited APS on the copper surfaces had a long-range effect which was seen deep into the epoxy layer, well away from the copper surface.  相似文献   
10.
The aim of this study was to evaluate the effects of storage media on the bond strength between resin composite and ceramic that was etched with hydrofluoric acid and silanized. Two types of ceramics were used: lithium disilicate and leucite-reinforced. The ceramic surface was etched with 4.7% hydrofluoric acid and bonded to the resin composite using a silane coupling agent. Specimens were divided into 10 groups and each group of specimen was subjected to different types of storage conditions for 7 days: de-ionized water (control), 15% ethanol, lemon soda, and cola. The microtensile test was used to measure the bond strength. The results showed that storage in food beverages significantly reduced bond strength compared to controls because of the acidity of beverages (ANOVA; p < 0.05). Lithium disilicate ceramics stored for 7 days in ethanol produced bond strengths significantly lower than those stored in 7 days in de-ionized water (p < 0.05). Leucite-reinforced ceramics stored for 7 days in lemon soda generated mean bond strengths significantly lower than those stored for 7 days in de-ionized water (p < 0.05). The significance of this in vitro study is that patients who have just repaired fractured crowns or inserted laminates should refrain from drinking acidic substances because it may weaken the resin-to-ceramic bond.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号