首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   3篇
  国内免费   8篇
综合类   3篇
化学工业   8篇
金属工艺   87篇
机械仪表   22篇
能源动力   2篇
武器工业   1篇
无线电   3篇
一般工业技术   52篇
冶金工业   3篇
原子能技术   6篇
  2024年   2篇
  2023年   2篇
  2022年   9篇
  2021年   8篇
  2020年   7篇
  2019年   4篇
  2018年   8篇
  2017年   7篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   8篇
  2012年   12篇
  2011年   11篇
  2010年   25篇
  2009年   10篇
  2008年   9篇
  2007年   11篇
  2006年   8篇
  2005年   9篇
  2004年   7篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1991年   2篇
排序方式: 共有187条查询结果,搜索用时 15 毫秒
1.
In this study, Cr(N,O)/CrN double-layered coatings were synthesized using the cathodic arc deposition (CAD) process. CrN film was first deposited onto a substrate as an interlayer to ensure better adhesion, and Cr(N,O) film was subsequently deposited on top of the CrN layer as the surface layer. Variation in the Cr(N,O) coating composition was achieved through changing the O2/N2 flow ratio during the last stage of processing. Phase structure, chemical composition, and morphology of the resulting coatings were analyzed and observed using the X-ray diffractometer, Auger electron spectrometer and SEM. In addition, oxidation behavior of the coatings was investigated using TGA/DTA methods. The tests were carried out by increasing temperature up to 1000 °C in ambient air. With the introduction of oxygen gas during the CAD process, a superficial layer was produced in the Cr(N,O) constituent containing CrN and Cr2O3 phases. The formation of the oxide phase attributed to the reaction of chromium and oxygen was more favorable than that of chromium and nitrogen. The results also showed that Cr(N,O)/CrN double-layered coatings exhibited superior oxidation resistance at elevated temperature than that of CrN single-layer coated specimen (870 °C vs. 750 °C).  相似文献   
2.
CrSiN coatings with different Si concentration (Si/(Cr + Si) ratio: 0, 3.7, 11.7, 20%) were deposited on stainless steel substrates using a closed field unbalanced magnetron sputtering (CFUBM) system. The variation in the microstructure of the films with the Si concentration was measured by XRD. The corrosion behavior of the CrSiN coatings in a deaerated 3.5% NaCl solution was investigated by potentiodynamic tests, electrochemical impedance spectroscopy (EIS) and surface analyses. The microstructure of the CrSiN film was found to depend on the Si concentration. The results of the potentiodynamic polarization tests showed that the corrosion current density and porosity decreased with increasing Si/(Cr + Si) ratio. The EIS measurements showed that the corrosion resistance of the Si-bearing CrN was improved by the phase transformation of the film, which led to an increase in the pore resistance and charge transfer resistance. The Si-bearing CrN possesses the best corrosion resistance at a Si/(Cr + Si) ratio of 20%, measured by the maximization of the pore resistance and charge transfer resistance.  相似文献   
3.
以不同氮离子辅助轰击能量制备CrN膜层.利用纳米压入仪及显微硬度计分别测试单晶Si片上膜层的硬度及断裂韧度K1C.使用XRD、XPS及EPMA分析离子轰击能量对镀层组织结构的影响。结果表明,采用能量较低的氮离子轰击得到的涂层,由于金属Cr的存在,涂层硬度虽有所降低,但断裂韧度K1C数值较高。选择较低的4keV辅助轰击能量,在M2高速钢基体上沉积CrN涂层,膜层在空气介质中表现出优异的耐磨减摩特性.但在水介质条件下,由于膜层接触区域的去钝化,再钝化使腐蚀和磨损相互加速,导致CrN膜层摩擦系数,尤其是磨损量明显高于基材。  相似文献   
4.
Approximately 1.5 μm thick CrN and CrAlN coatings were deposited on silicon and mild steel substrates by reactive direct current (DC) magnetron sputtering. The structural and mechanical properties of the coatings were characterized using X-ray diffraction (XRD) and nanoindentation techniques, respectively. The bonding structure of the coatings was characterized by X-ray photoelectron spectroscopy (XPS). The surface morphology of the coatings was studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The XRD data showed that the CrN and CrAlN coatings exhibited B1 NaCl structure. Nanoindentation measurements showed that as-deposited CrN and CrAlN coatings exhibited a hardness of 18 and 33 GPa, respectively. Results of the surface analysis of the as-deposited coatings using SEM and AFM showed a more compact and dense microstructure for CrAlN coatings. The thermal stability of the coatings was studied by heating the coatings in air from 400 to 900 °C. The structural changes as a result of heating were studied using micro-Raman spectroscopy. The Raman data revealed that CrN coatings got oxidized at 600 °C, whereas in the case of CrAlN coatings, no detectable oxides were formed even at 800 °C. After annealing up to 700 °C, the CrN coatings displayed a hardness of only about 7.5 GPa as compared to CrAlN coatings, which exhibited hardness as high as 22.5 GPa. The potentiodynamic polarization measurements in 3.5% NaCl solution indicated that the CrAlN coatings exhibited superior corrosion resistance as compared to CrN coatings.  相似文献   
5.
(Cr1‐x,Alx)N a review about a multi‐purpose coating system Nitride based coatings claimed a big market share for PVD‐coatings. Especially in the field for high temperature die casting and cutting operations chromium based coatings are well used. These coatings are also used in low temperature processes for the coating of machine parts. In the beginning of the nineties first examinations are done on the ternary system Chromium‐Aluminium‐Nitride. This system shows an excellent corrosion behaviour against many different liquids, but gains also a high hardness for a good wear behaviour. By changing the AlN to CrN content and the coating design CrAlN opens up a wide range for different coating applications. A major step for machine parts was the reducing of coating process temperature beneath 200 °C. This was only possible by using pulsed power supplies. CrAlN shows a very good performance on the fast growing market of coated machine parts e.g. on spindle bearings.  相似文献   
6.
TiAlN films were deposited on silicon (1 1 1) substrates from a TiAl target using a reactive DC magnetron sputtering process in Ar+N2 plasma. Films were prepared at various nitrogen flow rates and TiAl target compositions. Similarly, CrN films were prepared from the reactive sputtering of Cr target. Subsequently, nanolayered TiAlN/CrN multilayer films were deposited at various modulation wavelengths (Λ). X-ray diffraction (XRD), energy dispersive X-ray analysis, nanoindentation and atomic force microscopy were used to characterize the films. The XRD confirmed the formation of superlattice structure at low modulation wavelengths. The maximum hardness of TiAlN/CrN multilayers was 3900 kg/mm2, whereas TiAlN and CrN films exhibited maximum hardnesses of 3850 and 1000 kg/mm2, respectively. Thermal stability of TiAlN and TiAlN/CrN multilayer films was studied by heating the films in air in the temperature range (TA) of 500-900 °C for 30 min. The XRD spectra revealed that TiAlN/CrN multilayers were stable up to 800 °C and got oxidized substantially at 900 °C. On the other hand, the TiAlN films were stable up to 700 °C and got completely oxidized at 800 °C. Nanoindentation measurements performed on the films after heat treatment showed that TiAlN retained a hardness of 2200 kg/mm2 at TA=700 °C and TiAlN/CrN multilayers retained hardness as high as 2600 kg/mm2 upon annealing at 800° C.  相似文献   
7.
Arc-evaporated CrN, CrN and CrCN coatings   总被引:2,自引:0,他引:2  
The results of investigations of some tribological properties of chromium nitride, carbonitride and carbide films, prepared by cathodic arc-evaporation method (CAE) are presented in this article. The chemical composition of films was determined by the WDXs and EDXs. The different carbon content was obtained by using nitrogen and acetylene mixtures of various concentrations as the deposition atmosphere. The carbon content was ranging from 0 to 53 at.%. The adhesion of CrCN films was estimated from the analysis of scratch-test results comprising tangential (friction) force, acoustic emission and morphology of scratch surface. The films showed very good adhesion to steel substrates, expressed by Lc (critical load) value, as high as 90 N for carbon free films. The Lc decreased slightly as the carbon content increased. The hardness of films was investigated as a function of carbon content and was estimated by Jönsson-Hogmark method. The Lc value and hardness seem to be correlated in the same way with carbon content. The highest hardness (30 GPa) was obtained for CrN films, while carbon rich films (CrC) showed hardness at the level of 20 GPa. The tribological tests were performed in the ball-on-disk geometry in room air under the load of 1 N and 10 N. The wear rate of investigated films increased with carbon content above 20 at.%. The maximum value of the friction coefficient was 0.55, the same as for CrN films. It decreased to 0.33 as the carbon content increased.  相似文献   
8.
蒋钊  高恒蛟  周晖  肖更竭  成功  汪科良 《表面技术》2021,50(11):202-207
目的 基于密度泛函理论的第一性原理,对原子层改性氮化铬(CrN)涂层的关键性能进行仿真计算,以充分了解涂层微观组织结构演变和微观界面结构本质,为后续原子层沉积CrN工艺研究提供理论指导.方法 通过建立CrN(011)-CrN(011)复合体系模型,分析计算了涂层的界面性能、弹性性能及热力学性能.结果 模型结构经过优化后,各原子层间间距均发生不同程度的减小,且各层间距趋于一致.态密度分析表明:其优良的结构稳定性主要来自6.4~4.8 eV范围内Cr原子3d轨道和N原子2p轨道间的相互作用;基于应力应变的弹性常数满足波恩准则判定依据,力学性能稳定,计算结果为硬度30.29 GPa,体积模量409.83 GPa,剪切模量270.86 GPa.采用NVT系综模拟,当温度T≤1023 K时,温度波动振荡收敛;当温度T>1023 K时,温度在某个时间点瞬时激增而不收敛,可以得出CrN涂层的极限使用温度为1023 K.结论 原子层沉积改性的CrN硬质涂层具有优良的界面相容性,成键强度高,界面能低,结构性能稳定.  相似文献   
9.
10.
蔡群  蒲吉斌 《润滑与密封》2021,46(12):19-29
为改善涂层在真空、高温等苛刻条件下的摩擦学性能,利用中频直流磁控溅射技术在硅片和316L不锈钢上沉积了CrNCrN/Ag涂层,利用扫描电镜、透射电镜和X射线衍射仪对涂层的成分及相结构进行了表征,通过划痕测试仪、纳米压痕仪和摩擦磨损试验机测试了涂层的力学及摩擦学性能。结果表明:添加Ag元素以后,CrN/Ag涂层硬度及承载能力有所减小,但结合强度增加;真空高温环境下CrNCrN/Ag涂层摩擦因数随温度升高呈下降趋势,其中CrN涂层通过软化镀层减小剪切强度和阻力,从而减小摩擦因数,CrN/Ag涂层主要通过高温产生的热驱动力诱导表面Ag润滑膜的形成来减小摩擦因数;CrN涂层依靠自身剪切特性参与摩擦,而CrN/Ag涂层在真空高温下具有自润滑和持续润滑性能,作为自润滑零部件具有潜在的应用价值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号