首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
机械仪表   3篇
  2009年   1篇
  2007年   1篇
  1996年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Cryo-electron microscopy of vitrified specimens makes it possible to observe fully hydrated biological samples unimpaired by chemical fixation, staining and dehydration. High-pressure freezing represents important progress since it allows a 10-fold increase in the vitrification depth. High-pressure freezing can also induce the formation of undesirable high-pressure forms of ice. We show that ice III or IX is amorphized under the electron beam at a dose of about 2400 electronsnm−2 and that the resulting amorphous ice is similar to the vitreous water obtained by high-pressure freezing.  相似文献   
2.
We have quantitated the degree of structural preservation in cryo-sections of a vitrified biological specimen. Previous studies have used sections of periodic specimens to assess the resolution present, but preservation before sectioning was not assessed and so the damage due particularly to cutting was not clear. In this study large single crystals of lysozyme were vitrified and from these X-ray diffraction patterns extending to better than 2.1 Å were obtained. The crystals were high pressure frozen in 30% dextran, and cryo-sectioned using a diamond knife. In the best case, preservation to a resolution of 7.9 Å was shown by electron diffraction, the first observation of sub-nanometre structural preservation in a vitreous section.  相似文献   
3.
Over the last two decades, several different preparative techniques have been developed to investigate frozen‐hydrated biological samples by electron microscopy. In this article, we describe an alternative approach that allows either ultrastructural investigations of frozen human skin at a resolution better than 15 nm or sample throughput that is sufficiently high enough for quantitative morphological analysis. The specimen preparation method we describe is fast, reproducible, does not require much user experience or elaborate equipment. We compare high‐pressure freezing with plunge freezing, and block faces with frozen‐hydrated slices (sections), to study variations in cell thickness upon hydration changes. Plunge freezing is optimal for morphological and stereological investigations of structures with low water content. By contrast, high‐pressure freezing proved optimal for high‐resolution studies and provided the best ultrastructural preservation. A combination of these fast‐freezing techniques with cryo‐ultramicrotomy yielded well‐preserved block faces of the original biological material. Here we show that these block faces did not exhibit any of the artefacts normally associated with cryo‐sections, and – after evaporating a heavy metal and carbon onto the surface – are stable enough in the electron beam to provide high‐resolution images of large surface areas for statistical analysis in a cryo‐SEM (scanning electron microscope). Because the individual preparation steps use only standard equipment and do not require much experience from the experimenter, they are generally more usable, making this approach an interesting alternative to other methods for the ultrastructural investigation of frozen‐hydrated material.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号