首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
金属工艺   1篇
机械仪表   11篇
能源动力   7篇
无线电   11篇
一般工业技术   8篇
自动化技术   1篇
  2017年   1篇
  2016年   2篇
  2014年   3篇
  2011年   6篇
  2009年   2篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1986年   2篇
  1979年   1篇
排序方式: 共有39条查询结果,搜索用时 171 毫秒
1.
铸造多晶硅中铜沉淀的电子束诱生电流   总被引:3,自引:0,他引:3  
利用电子束诱生电流(EBIC)研究了不同热处理条件下太阳电池用铸造多晶硅材料中的铜的沉淀特性,并与铜在普通直拉硅单晶中的沉淀行为进行了比较。EBIC观察发现,在铸造多晶硅中,热处理的冷却速率和结晶学缺陷(如晶界和位错)共同影响着铜在多晶硅中的扩散和沉淀性质。样品在快速冷却时,在晶界以及晶粒内形成了很高密度且分布较均匀的细小铜沉淀;而在慢速冷却时,则是形成密度较低,较大尺寸的铜沉淀。EBIC的衬度计算显示,慢速冷却下形成的铜沉淀具有更强的复合特性,且铜沉淀在晶界上的分布具有选择性。最后,讨论了铜沉淀在铸造多晶硅中的形成机理。  相似文献   
2.
The silicon carbide bipolar junction transistor (BJT) is attractive for use in high-voltage switching applications offering high-voltage blocking characteristics, low switching losses, and is capable of operating at current densities exceeding 300 A/cm2. However, performance reliability issues such as degradation of current gain and on-resistance currently prohibit commercial production of 4H-SiC BJTs. This paper examines the physical mechanisms responsible for this degradation as well as the impact that these physical phenomena have on device performance. Results were obtained through the examination of several types of N-P-N BJT structures using various fabrication methodologies. Electron-beam induced current (EBIC) and potassium hydroxide (KOH) etching were used to characterize defect content in the material, before and after device current stress, when possible. It was found that Shockley stacking faults (stress-induced structures) associated with the forward voltage drift phenomenon in SiC bipolar diodes, also play a major role in the reduction of gain and an increase of on-resistance of the BJTs. However, results from some devices suggest that additional processes at the device periphery (edge of the emitter) may also contribute to degradation in electrical performance. Hence, it is essential that the sources of electrical degradation, identified in this paper, be eliminated for SiC BJTs to be viable for commercial scale production.  相似文献   
3.
Direct epitaxial crystalline silicon thin film (CSiTF) solar cells on low-cost silicon sheets from powder (SSP) ribbons have been prepared using rapid thermal chemical vapour deposition (CVD) growth. The characterisation of CSiTF solar cells was investigated by electron and spectrally resolved light beam induced current (EBIC and SR-LBIC, respectively). All EBIC measurements were performed on both the front-side surface as well as on the cross-section of CSiTF solar cells. The electrical recombination was detected by EBIC and compared with their morphologies. The results of EBIC scan show that recombination centres are situated at grain boundaries (GBs); higher the density of grain, higher the recombination activities (higher contrast). Recombination of different intensity (strong and weak) takes place at vertical GBs. Compared with the high recombination at GBs, the contrast in intragrain is low. The dark contrast of the GBs and intragrain defects is clearly reduced near the surface due to the passivation by hydrogen, which indicates that the minority carrier diffusion length decreases gradually with the depth perpendicular to the surface. The diffusion length was determined by SR-LBIC. The results show that the diffusion length distribution is quite inhomogeneous over the whole cell area. A maximum Leff of about 25 μm and mean values around 15 μm are calculated for the best solar cell.  相似文献   
4.
Recombination activity of small-angle grain boundaries (SA GBs) in multicrystalline silicon (mc-Si) was studied by means of electron-beam-induced current (EBIC) technique. In the as-grown mc-Si, the EBIC contrasts of special Σ and random GBs were weak at both 300 and 100 K, whereas those of SA GBs were weak (<3%) at 300 K and strong (30–40%) at 100 K. In the contaminated mc-Si, SA GBs showed stronger EBIC contrast than Σ and R GBs at 300 K. It is indicated that SA GBs possess high density of shallow levels and are easily contaminated with Fe compared to other GBs.  相似文献   
5.
High-resolution electron beam induced current (EBIC) analyses were carried out on a shallow ion implanted p+–n silicon junction in a scanning electron microscope (SEM) and a scanning probe microscope (SPM) hybrid system. With this scanning near-field EBIC microscope, a sample can be conventionally imaged by SEM, its local topography investigated by SPM and high-resolution EBIC image simultaneously obtained. It is shown that the EBIC imaging capabilities of this combined instrument allows the study of p–n junctions with a resolution of about 20 nm.  相似文献   
6.
Charge collection microscopy, usually known by the acronym EBIC (Electron Beam Induced Current) imaging, is a powerful technique for the observation and characterization of semiconductor materials and devices in the scanning electron microscope. Quantitative interpretation of EBIC images is often difficult because of the problem of accurately representing the electron-beam interaction with the semiconductor. This paper uses a Monte Carlo technique to simulate the electron-beam interaction, and it is shown that this permits simple analytical point-source solutions to be generalized to fully represent the experimental situation of an extended, non-uniform, carrier source. The model is demonstrated by application to EBIC imaging in the Schottky barrier geometry.  相似文献   
7.
Although electron beam-induced current (EBIC) technique was invented in the seventies, it is still a powerful technique for failure analysis and reliability investigations of modern materials and devices. Time-resolved and stroboscopic microanalyses using sampling Fourier components decomposed by modulated charge carrier excitation are introduced. Quantitative determination of electric field strengths within dynamically operated devices in the scanning electron microscope (SEM) will be demonstrated. This technique allows investigations of diffusion and drift processes and of variations of electric field distributions inside active devices.  相似文献   
8.
The total current-voltage characteristics of the p+-n+-p-n? and n+-p-n-p? diodes under investigation show branches of negative differential resistance. Accompanied by the appearance of negative differential resistance is a filamentation of current-density and electric-field distribution. Electron beam-induced current (EBIC) measurements were used to examine the properties of filamentation from the point of view of self-organized pattern formation. Besides the detection of the spatial distribution of the electric field, EBIC measurements give information on current-density filamentation. Furthermore, the perturbation by the electron beam gives information on the dynamic behavior of the filamentary structure.  相似文献   
9.
We report on the electron beam induced current (EBIC) investigation of GaN nanowires grown on n-doped Si (111) substrates. The objective of this study is to acquire information about the modifications of the substrate properties induced by the wire growth. We show that the growth procedure using deposition of an ultra-thin AlN layer prior to the nanowire growth step leads to the formation of a p-n junction in the Si substrate with a high surface conductivity. The induced p-n junction exhibits a photoresponse over the spectral range from 360 nm to 1100 nm. The properties of the induced p-n junction are investigated on the cross section and in a top view configuration with EBIC microscopy. For a localized contact of the GaN nanowires, the collection range in Si extends over a few millimeters. The treatment of the surface using reactive ion etching with a CHF3 plasma leads to the inhibition of the surface conductivity and to the appearance of an S-shape in the current-voltage characteristics under illumination. The conversion efficiency of the plasma-treated sample under AM1.5G solar spectrum is estimated to be in the 2.1–2.7% range.  相似文献   
10.
In this article, we report the electron beam-induced current (EBIC) measurements in a GaN Schottky diode performed in the line-scan configuration. A theoretical model with an extended generation source was used to accurately extract some minority carrier transport properties of the unintentionally doped n-GaN layer. The minority hole diffusion length is found to increase from ∼0.35 μm near the junction to ∼1.74 μm at the bulk regions. This change is attributed to an increase of the carrier lifetime caused by the polarization effects, which are preponderant in this component. For depth distances exceeding 0.65 μm, it is shown that the measured current is produced by the reabsorption recombination radiation process. This corresponds to an absorption coefficient of 0.178 μm−1, in good agreement with the optical absorption measurement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号