首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
机械仪表   2篇
能源动力   3篇
自动化技术   1篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2000年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
A detailed experimental and numerical investigation of the unsteady interaction of secondary flow vortices in turbine endwall region was performed with the effect of upstream periodic wakes. The flow field was investigated respectively in a linear turbine cascade and a turbine rotor. The study revealed the physical mechanisms of unsteady interaction between upstream wake and secondary vortices. The influence of the upstream wake on the performance of turbine endwall region was also discussed.The flow field at the exit of the turbine blade row showed a decrease in passage vortex strength and loss due to the upstream wake transport. Two interaction mechanisms are proposed whereby passage vortex loss decreases. They are the upstream wake-pressure side leg of the horseshoe vortex interaction and the upstream wake-passage vortex interaction. The transport of upstream wake can suppress the development of pressure side leg of the horseshoe vortex and passage vortex because of the “negative jet” influence of the wake.  相似文献   
2.
The endwall heat transfer characteristics of forced flow past bluff bodies have been investigated using liquid crystal thermography (LCT). The bluff body is placed in a rectangular channel with both its ends attached to the endwalls. The Reynolds number varies from 50,000 to 100,000. In this study, a single bluff body and two bluff bodies arranged in tandem are considered. Due to the formation of horseshoe vortices, the heat transfer is enhanced appreciably for both cases. However, for the case of two bluff bodies in tandem, it is found that the presence of the second bluff body decreases the heat transfer as compared to the case of a single bluff body. In addition, the results show that the heat transfer exhibits Reynolds number similarity. For a single bluff body, the Nusselt number profiles collapse well when the data are scaled by Re0.55; for two bluff bodies arranged in tandem, the heat transfer scaling is changed to Re0.51, indicating that the power index of Reynolds number is flow dependent.  相似文献   
3.
Effects of incidence angle on the endwall convective transport within a high-turning turbine rotor passage have been investigated. Surface flow visualizations and heat/mass transfer measurements at off-design conditions are carried out at a fixed inlet Reynolds number of 2.78 × 105 for the incidence angles of −10°, −5°, 0, 5°, and 10°. The result shows that the incidence angle has considerable influences on the endwall local transport phenomena and on the behaviors of various endwall vortices. In the negative incidence case, convective transport is less influenced by the leading edge horseshoe vortex and by the suction-side corner vortex along their loci but is increased along the pressure-side corner vortex. In the case of positive incidence, however, convective transport is augmented remarkably along the leading edge horseshoe vortex, and is much influenced by the suction-side corner vortex. Moreover, heat/mass transfer is enhanced significantly along the pressure-side leading edge corner vortex. Local endwall convective transport in the area other than the endwall vortex sites is influenced significantly by the cascade inlet-to-exit velocity ratio which depends strongly on the incidence angle.  相似文献   
4.
在大尺寸低速叶栅传热风洞中对一种高压涡轮导向叶栅的流场进行了流动显示实验研究。分别采用线簇和小球浮动法对五个雷诺数下的叶栅端壁区三维流场、叶片表面和端壁表面的流动进行了显示。实验结果表明 :涡轮叶栅中有强烈的二次流动 ,并存在复杂的涡系 ;三维流动区约占叶栅通道的 40 % ;雷诺数的增大将增强端壁区的三维流动。流场显示图片说明 :叶片吸力面靠近端壁有角涡形成与发展 ,并存在一个三角形区域 ;流场显示的通道涡大小与流场测量结果吻合。本文的实验结果可用于分析端壁表面和叶片表面换热特性的形成机理  相似文献   
5.
弯曲叶片是改善压气机近端壁流动的有效技术手段之一。为探索叶片弯曲对高负荷压气机叶栅流场的影响机理,在初始高负荷直列叶栅的基础上,设计了不同正/反弯曲水平的叶栅,并采用数值模拟方法对系列叶栅进行研究。研究发现:叶片正弯曲形成了中间静压低、两端静压高的"C"形静压分布,可有效改善压气机叶栅近端壁流场,显著抑制角区分离,使得端壁区域扩压能力提高;正弯曲可增大叶展中部区域负荷,恶化叶中流场,增大流动分离;叶片反弯曲形成了中间静压高、两端静压低的反"C"形静压分布,可显著恶化近端壁区流场,角区分离区增大,端壁区域扩压能力降低,叶中流场有所改善。  相似文献   
6.
This paper is focused on the film cooling performance of combustor-turbine leakage flow at off-design condition. The influence of incidence angle on film cooling effectiveness on first-stage vane endwall with combustor-turbine interface slot is studied. A baseline slot configuration is tested in a low speed four-blade cascade comprising a large-scale model of the GE-E3Nozzle Guide Vane (NGV). The slot has a forward expansion angle of 30 deg. to the endwall surface. The Reynolds number based on the axial chord and inlet velocity of the free-stream flow is 3.5 × 105 and the testing is done in a four-blade cascade with low Mach number condition (0.1 at the inlet). The blowing ratio of the coolant through the interface gap varies from M = 0.1 to M = 0.3, while the blowing ratio varies from M = 0.7 to M = 1.3 for the endwall film cooling holes. The film-cooling effectiveness distributions are obtained using the pressure sensitive paint (PSP) technique. The results show that with an increasing blowing ratio the film-cooling effectiveness increases on the endwall. As the incidence angle varies from i = +10 deg. to i = ?10 deg., at low blowing ratio, the averaged film-cooling effectiveness changes slightly near the leading edge suction side area. The case of i = +10 deg. has better film-cooling performance at the downstream part of this region where the axial chord is between 0.15 and 0.25. However, the disadvantage of positive incidence appears when the blowing ratio increases, especially at the upstream part of near suction side region where the axial chord is between 0 and 0.15. On the main passage endwall surface, as the incidence angle changes from i = +10 deg. to i = ?10 deg., the averaged film-cooling effectiveness changes slightly and the negative incidence appears to be more effective for the downstream part film cooling of the endwall surface where the axial chord is between 0.6 and 0.8.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号