首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
  国内免费   2篇
电工技术   3篇
化学工业   5篇
机械仪表   3篇
无线电   1篇
一般工业技术   3篇
自动化技术   18篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2014年   7篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2003年   1篇
  1999年   2篇
  1998年   1篇
  1990年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
This paper presents an application of genetic programming (GP) to optimally select and fuse conventional features (C-features) for the detection of epileptic waveforms within intracranial electroencephalogram (IEEG) recordings that precede seizures, known as seizure precursors. Evidence suggests that seizure precursors may localize regions important to seizure generation on the IEEG and epilepsy treatment. However, current methods to detect epileptic precursors lack a sound approach to automatically select and combine C-features that best distinguish epileptic events from background, relying on visual review predominantly. This work suggests GP as an optimal alternative to create a single feature after evaluating the performance of a binary detector that uses: (1) genetically programmed features; (2) features selected via GP; (3) forward sequentially selected features; and (4) visually selected features. Results demonstrate that a detector with a genetically programmed feature outperforms the other three approaches, achieving over 78.5% positive predictive value, 83.5% sensitivity, and 93% specificity at the 95% level of confidence.  相似文献   
2.
Epilepsy is a neurological disorder which is characterized by transient and unexpected electrical disturbance of the brain. The electroencephalogram (EEG) is a commonly used signal for detection of epileptic seizures. This paper presents a new method for classification of ictal and seizure-free EEG signals. The proposed method is based on the empirical mode decomposition (EMD) and the second-order difference plot (SODP). The EMD method decomposes an EEG signal into a set of symmetric and band-limited signals termed as intrinsic mode functions (IMFs). The SODP of IMFs provides elliptical structure. The 95% confidence ellipse area measured from the SODP of IMFs has been used as a feature in order to discriminate seizure-free EEG signals from the epileptic seizure EEG signals. The feature space obtained from the ellipse area parameters of two IMFs has been used for classification of ictal and seizure-free EEG signals using the artificial neural network (ANN) classifier. It has been shown that the feature space formed using ellipse area parameters of first and second IMFs has given good classification performance. Experimental results on EEG database available by the University of Bonn, Germany, are included to illustrate the effectiveness of the proposed method.  相似文献   
3.
There is evidence that biological and physiological systems including the brain exhibit can exhibit fractal characteristics that can be used to identify the state of the system. In this study, wavelet-based fractal analysis is used to examine self-similar or scale-invariant characteristics of intracranial EEG data in terms of the spectral exponent. The intracranial EEG data were recorded from subjects with epilepsy during non-seizure period and during epileptic seizure activity. From the computational results, it is observed that the self-similar or scale-invariant characteristics of the intracranial EEG data obtained during these two periods are significantly different. The actual value of the estimated spectral exponent depends on the wavelet bases used for the computations.  相似文献   
4.
Automating the detection of epileptic seizures could reduce the significant human resources necessary for the care of patients suffering from intractable epilepsy and offer improved solutions for closed-loop therapeutic devices such as implantable electrical stimulation systems. While numerous detection algorithms have been published, an effective detector in the clinical setting remains elusive. There are significant challenges facing seizure detection algorithms. The epilepsy EEG morphology can vary widely among the patient population. EEG recordings from the same patient can change over time. EEG recordings can be contaminated with artifacts that often resemble epileptic seizure activity. In order for an epileptic seizure detector to be successful, it must be able to adapt to these different challenges. In this study, a novel detector is proposed based on a support vector machine assembly classifier (SVMA). The SVMA consists of a group of SVMs each trained with a different set of weights between the seizure and non-seizure data and the user can selectively control the output of the SVMA classifier. The algorithm can improve the detection performance compared to traditional methods by providing an effective tuning strategy for specific patients. The proposed algorithm also demonstrates a clear advantage over threshold tuning. When compared with the detection performances reported by other studies using the publicly available epilepsy dataset hosted by the University of BONN, the proposed SVMA detector achieved the best total accuracy of 98.72%. These results demonstrate the efficacy of the proposed SVMA detector and its potential in the clinical setting.  相似文献   
5.
The electroencephalogram (EEG) has proven a valuable tool in the study and detection of epilepsy. This paper investigates for the first time the use of Permutation Entropy (PE) as a feature for automated epileptic seizure detection. A Support Vector Machine (SVM) is used to classify segments of normal and epileptic EEG based on PE values. The proposed system utilizes the fact that the EEG during epileptic seizures is characterized by lower PE than normal EEG. It is shown that average sensitivity of 94.38% and average specificity of 93.23% is obtained by using PE as a feature to characterize epileptic and seizure-free EEG, while 100% sensitivity and specificity were also obtained in single-trial classifications.  相似文献   
6.
本文提出了一种检测EEG中棘波的新方法。这种方法首先对仿真信号进行时频变换,得到模型棘波的时频特征。EEG信号经过时频变换后,计算EEG信号与模型棘波的时频相关系数,利用相关系数和时频分布中高频部分的能量,给出了一个确定EEG信号中是否含有棘波的指标,并定义这个指标为棘波概率。检测过程中,以棘波概率的大小检测棘波。实际应用表明,这种方法能够准确地检测EEG信号中的癫痫样瞬态特征  相似文献   
7.
HRV (Heart Rate Variability) is an indicator that can be related to different human organs and systems: breathing, heart, brain, pulmonary system, etc. In cardiac clinic, physical exertion can be pre-assessed thanks to HR (Heart Rate) response using appropriate tests to rule out eventual cardiac dysfunction prior to undergo patient to further exams, surgical operations and rehabilitation activities. HR assessment must determine the capability of patient to continue exertion up to a certain level without having angina pain symptoms and brain dysfunctions. The variability of HR is a marker of dynamic load because it is sensitive and responsive to acute stress. Moreover it is also a marker of a cumulative wear and tear because it declines with advancing age. In this paper we propose combined measurements of EEG-Ergospirometry and ECG for patient’s cardio-pulmonary condition assessment for allowing doctors to make a decision on rehabilitation or surgical operation for people suspected of suffering from epilepsy seizures. Measurements assessed using frequency domain parameters have permitted the determination of low and high frequencies that are related to sympathetic and parasympathetic activities respectively.  相似文献   
8.
The electroencephalogram (EEG) is a representative signal containing information about the condition of the brain. The shape of the wave may contain useful information about the state of the brain. However, the human observer cannot directly monitor these subtle details. Besides, since bio-signals are highly subjective, the symptoms may appear at random in the time scale. Therefore, the EEG signal parameters, extracted and analyzed using computers, are highly useful in diagnostics. The aim of this work is to compare the different entropy estimators when applied to EEG data from normal and epileptic subjects. The results obtained indicate that entropy estimators can distinguish normal and epileptic EEG data with more than 95% confidence (using t-test). The classification ability of the entropy measures is tested using ANFIS classifier. The results are promising and a classification accuracy of about 90% is achieved.  相似文献   
9.
Epilepsy is one of the most common neurological disorders characterized by transient and unexpected electrical disturbance of the brain. The electroencephalogram (EEG) is an invaluable measurement for the purpose of assessing brain activities, containing information relating to the different physiological states of the brain. It is a very effective tool for understanding the complex dynamical behavior of the brain. This paper presents the application of empirical mode decomposition (EMD) for analysis of EEG signals. The EMD decomposes a EEG signal into a finite set of bandlimited signals termed intrinsic mode functions (IMFs). The Hilbert transformation of IMFs provides analytic signal representation of IMFs. The area measured from the trace of the analytic IMFs, which have circular form in the complex plane, has been used as a feature in order to discriminate normal EEG signals from the epileptic seizure EEG signals. It has been shown that the area measure of the IMFs has given good discrimination performance. Simulation results illustrate the effectiveness of the proposed method.  相似文献   
10.
Epilepsy is one of the most common neurological disorders- approximately one in every 100 people worldwide are suffering from it. In this paper, a novel pattern recognition model is presented for automatic epilepsy diagnosis. Wavelet transform is investigated to decompose EEG into five EEG frequency bands which approximate to delta (δ), theta (θ), alpha (α), beta (β), and gamma (γ) bands. Complexity based features such as permutation entropy (PE), sample entropy (SampEn), and the Hurst exponent (HE) are extracted from both the original EEG signals and each of the frequency bands. The wavelet-based methodology separates the alterations in PE, SampEn, and HE in specific frequency bands of the EEG. The effectiveness of these complexity based measures in discriminating between normal brain state and brain state during the absence of seizures is evaluated using the Extreme Learning Machine (ELM). It is discovered that although there exists no significant differences in the feature values extracted from the original EEG signals, differences can be recognized when the features are examined within specific EEG frequency bands. A genetic algorithm (GA) is developed to choose feature subsets that are effective for enhancing the recognition performance. The GA is also examined for weight alteration for both sensitivity and specificity. The results show that the abnormal EEG diagnosis rate of the model without the involvement of the genetic algorithm is 85.9%. However, the diagnosis rate of the model increases to 94.2% when the genetic algorithm is integrated as a feature selector.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号