首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39656篇
  免费   2669篇
  国内免费   1844篇
电工技术   841篇
技术理论   1篇
综合类   2651篇
化学工业   3548篇
金属工艺   3258篇
机械仪表   5428篇
建筑科学   2056篇
矿业工程   695篇
能源动力   1100篇
轻工业   1675篇
水利工程   210篇
石油天然气   873篇
武器工业   194篇
无线电   3473篇
一般工业技术   4531篇
冶金工业   1490篇
原子能技术   170篇
自动化技术   11975篇
  2024年   71篇
  2023年   514篇
  2022年   956篇
  2021年   891篇
  2020年   908篇
  2019年   920篇
  2018年   702篇
  2017年   970篇
  2016年   1124篇
  2015年   1171篇
  2014年   1710篇
  2013年   1722篇
  2012年   2299篇
  2011年   2524篇
  2010年   1545篇
  2009年   1971篇
  2008年   1667篇
  2007年   1890篇
  2006年   1789篇
  2005年   1489篇
  2004年   2018篇
  2003年   1708篇
  2002年   2200篇
  2001年   1751篇
  2000年   1554篇
  1999年   1344篇
  1998年   879篇
  1997年   883篇
  1996年   1757篇
  1995年   1005篇
  1994年   720篇
  1993年   245篇
  1992年   199篇
  1991年   208篇
  1990年   171篇
  1989年   104篇
  1988年   81篇
  1987年   51篇
  1986年   72篇
  1985年   83篇
  1984年   59篇
  1983年   44篇
  1982年   42篇
  1981年   42篇
  1980年   14篇
  1979年   18篇
  1978年   11篇
  1977年   10篇
  1976年   9篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Machine learning algorithms have been widely used in mine fault diagnosis. The correct selection of the suitable algorithms is the key factor that affects the fault diagnosis. However, the impact of machine learning algorithms on the prediction performance of mine fault diagnosis models has not been fully evaluated. In this study, the windage alteration faults (WAFs) diagnosis models, which are based on K-nearest neighbor algorithm (KNN), multi-layer perceptron (MLP), support vector machine (SVM), and decision tree (DT), are constructed. Furthermore, the applicability of these four algorithms in the WAFs diagnosis is explored by a T-type ventilation network simulation experiment and the field empirical application research of Jinchuan No. 2 mine. The accuracy of the fault location diagnosis for the four models in both networks was 100%. In the simulation experiment, the mean absolute percentage error (MAPE) between the predicted values and the real values of the fault volume of the four models was 0.59%, 97.26%, 123.61%, and 8.78%, respectively. The MAPE for the field empirical application was 3.94%, 52.40%, 25.25%, and 7.15%, respectively. The results of the comprehensive evaluation of the fault location and fault volume diagnosis tests showed that the KNN model is the most suitable algorithm for the WAFs diagnosis, whereas the prediction performance of the DT model was the second-best. This study realizes the intelligent diagnosis of WAFs, and provides technical support for the realization of intelligent ventilation.  相似文献   
2.
The evaluation of the volumetric accuracy of a machine tool is an open challenge in the industry, and a wide variety of technical solutions are available in the market and at research level. All solutions have advantages and disadvantages concerning which errors can be measured, the achievable uncertainty, the ease of implementation, possibility of machine integration and automation, the equipment cost and the machine occupation time, and it is not always straightforward which option to choose for each application. The need to ensure accuracy during the whole lifetime of the machine and the availability of monitoring systems developed following the Industry 4.0 trend are pushing the development of measurement systems that can be integrated in the machine to perform semi-automatic verification procedures that can be performed frequently by the machine user to monitor the condition of the machine. Calibrated artefact based calibration and verification solutions have an advantage in this field over laser based solutions in terms of cost and feasibility of machine integration, but they need to be optimized for each machine and customer requirements to achieve the required calibration uncertainty and minimize machine occupation time.This paper introduces a digital twin-based methodology to simulate all relevant effects in an artefact-based machine tool calibration procedure, from the machine itself with its expected error ranges, to the artefact geometry and uncertainty, artefact positions in the workspace, probe uncertainty, compensation model, etc. By parameterizing all relevant variables in the design of the calibration procedure, this simulation methodology can be used to analyse the effect of each design variable on the error mapping uncertainty, which is of great help in adapting the procedure to each specific machine and user requirements. The simulation methodology and the analysis possibilities are illustrated by applying it on a 3-axis milling machine tool.  相似文献   
3.
Engineering new glass compositions have experienced a sturdy tendency to move forward from (educated) trial-and-error to data- and simulation-driven strategies. In this work, we developed a computer program that combines data-driven predictive models (in this case, neural networks) with a genetic algorithm to design glass compositions with desired combinations of properties. First, we induced predictive models for the glass transition temperature (Tg) using a dataset of 45,302 compositions with 39 different chemical elements, and for the refractive index (nd) using a dataset of 41,225 compositions with 38 different chemical elements. Then, we searched for relevant glass compositions using a genetic algorithm informed by a design trend of glasses having high nd (1.7 or more) and low Tg (500 °C or less). Two candidate compositions suggested by the combined algorithms were selected and produced in the laboratory. These compositions are significantly different from those in the datasets used to induce the predictive models, showing that the used method is indeed capable of exploration. Both glasses met the constraints of the work, which supports the proposed framework. Therefore, this new tool can be immediately used for accelerating the design of new glasses. These results are a stepping stone in the pathway of machine learning-guided design of novel glasses.  相似文献   
4.
5.
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films are attracting famous applications in antistatic coating, energy storage and conversion, printed electronics, and biomedical fields due to their conductivity, optical transparency and flexibility. However, PEDOT:PSS has poor dispersion stability during long-term storage and transport. Moreover, the dried PEDOT:PSS films are insoluble in any solvent and cannot be redispersed again. In comparison to bake drying, here, a feasible strategy to achieve mechanically redispersed PEDOT:PSS with the help of freeze-drying process was reported. The redispersed PEDOT:PSS can recover not only the initial characters such as pH, chemical composition, viscosity, and particle size under similar solid contents, but also conductivity and surface morphology of treated films. In addition, the treated film exhibits self-healing properties similar to pristine film in terms of mechanical and electrical properties. This technology enables reuse and overcomes the technical problems of PEDOT:PSS dispersion, realizing real-time processing to meet variable applications.  相似文献   
6.
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating.  相似文献   
7.
Naringin (NAR), a major flavanone (FVA) glycoside, is a component of food mainly obtained from grapefruit. We used NAR as a food additive to improve the solubility and permeability of hydrophobic polyphenols used as supplements in the food industry. The spray-dried particles (SDPs) of NAR alone show an amorphous state with a glass transition temperature (Tg) at 93.2 °C. SDPs of hydrophobic polyphenols, such as flavone (FVO), quercetin (QCT), naringenin (NRG), and resveratrol (RVT) were prepared by adding varying amounts of NAR. All SDPs of hydrophobic polyphenols with added NAR were in an amorphous state with a single Tg, but SDPs of hydrophobic polyphenols without added NAR showed diffraction peaks derived from each crystal. The SDPs with NAR could keep an amorphous state after storage at a high humidity condition for one month, except for SDPs of RVT/NAR. SDPs with NAR enhanced the solubility of hydrophobic polyphenols, especially NRG solubility, which was enhanced more than 9 times compared to NRG crystal. The enhanced solubility resulted in the increased membrane permeability of NRG. The antioxidant effect of the hydrophobic NRG was also enhanced by the synergetic effect of NAR. The findings demonstrated that NAR could be used as a food additive to enhance the solubility and membrane permeability of hydrophobic polyphenols.  相似文献   
8.
Membrane electrode assembly (MEA) is considered a key component of a proton exchange membrane fuel cell (PEMFC). However, developing a new MEA to meet desired properties, such as operation under low-humidity conditions without a humidifier, is a time- and cost-consuming process. This study employs a machine-learning-based approach using K-nearest neighbor (KNN) and neural networks (NN) in the MEA development process by identifying a suitable catalyst layer (CL) recipe in MEA. Minimum redundancy maximum relevance and principal component analysis were implemented to specify the most important predictor and reduce the data dimension. The number of predictors was found to play an essential role in the accuracy of the KNN and NN models although the predictors have self-correlations. The KNN model with a K of 7 was found to minimize the model loss with a loss of 11.9%. The NN model constructed by three corresponding hidden layers with nine, eight, and nine nodes can achieve the lowest error of 0.1293 for the Pt catalyst and 0.031 for PVA as a good additive blending in the CL of the MEA. However, even if the error is low, the prediction of PVA seems to be inaccurate, regardless of the model structure. Therefore, the KNN model is more appropriate for CL recipe prediction.  相似文献   
9.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号