首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8897篇
  免费   318篇
  国内免费   236篇
电工技术   174篇
综合类   282篇
化学工业   2024篇
金属工艺   398篇
机械仪表   610篇
建筑科学   197篇
矿业工程   144篇
能源动力   877篇
轻工业   567篇
水利工程   28篇
石油天然气   236篇
武器工业   156篇
无线电   1082篇
一般工业技术   1411篇
冶金工业   215篇
原子能技术   348篇
自动化技术   702篇
  2024年   8篇
  2023年   106篇
  2022年   168篇
  2021年   207篇
  2020年   156篇
  2019年   157篇
  2018年   156篇
  2017年   244篇
  2016年   223篇
  2015年   231篇
  2014年   425篇
  2013年   491篇
  2012年   415篇
  2011年   662篇
  2010年   420篇
  2009年   547篇
  2008年   452篇
  2007年   497篇
  2006年   528篇
  2005年   428篇
  2004年   379篇
  2003年   365篇
  2002年   310篇
  2001年   249篇
  2000年   241篇
  1999年   187篇
  1998年   173篇
  1997年   169篇
  1996年   148篇
  1995年   135篇
  1994年   130篇
  1993年   85篇
  1992年   67篇
  1991年   60篇
  1990年   53篇
  1989年   45篇
  1988年   29篇
  1987年   24篇
  1986年   22篇
  1985年   17篇
  1984年   12篇
  1983年   11篇
  1982年   5篇
  1981年   2篇
  1980年   6篇
  1979年   3篇
  1977年   1篇
  1975年   2篇
排序方式: 共有9451条查询结果,搜索用时 31 毫秒
1.
The demand for clean energy use has been increasing worldwide, and hydrogen has attracted attention as an alternative energy source. The efficient transport of hydrogen must be established such that hydrogen may be used as an energy source. In this study, we considered the influences of various parameters in the transportation of liquefied hydrogen using type C tanks in shipping vessels. The sloshing and thermal flows were considered in the transportation of liquefied hydrogen, which exists as a cryogenic liquid at ?253 °C. In this study, the sloshing flow was analyzed using a numerical approach. A multiphase sloshing simulation was performed using the volume of fluid method for the observation and analysis of the internal flow. First, a sloshing experiment according to the gas-liquid density ratio performed by other researchers was utilized to verify the simulation technique and investigate the characteristics of liquefied hydrogen. Based on the results of this experiment, a sloshing simulation was then performed for a type C cargo tank for liquefied hydrogen carriers under three different filling level conditions. The sloshing impact pressure inside of the tank was measured via simulation and subjected to statistical analysis. In addition, the influence of sloshing flow on the appendages installed inside of the type C tank (stiffened ring and swash bulkhead) was quantitatively evaluated. In particular, the influence of the sloshing flow inside of the type C tank on the appendages can be utilized as an important indicator at the design stage. Furthermore, if such sloshing impact forces are repeatedly experienced over an extended period of time under cryogenic conditions, the behavior of the tank and appendages must be analyzed in terms of fatigue and brittle failure to ensure the safety of the transportation operation.  相似文献   
2.
In this study, the effects of cell temperature and relative humidity on charge transport parameters are numerically analyzed. In order to perform this analysis, three-dimensional and anisotropic numerical models are developed. The numerical models are integrated into the experimental values for anisotropic electrical conductivities, as depending on cell temperature and relative humidity, that were obtained from our previous study. The achieved results indicate that the values of current densities in the in-plane direction increase with increasing cell temperature and relative humidity, while the current densities reach a maximum in the rib regions for both the numerical model at the through-plane direction. The behaviors of electrolyte potentials are similar with changes in the cell temperature and relative humidity. In addition, the cathode electrical potentials in both the in-plane direction and through-plane direction do not change to a considerable amount with increasing cell temperature and relative humidity.  相似文献   
3.
Monitoring the temperature in liquid hydrogen (LH2) storage tanks on ships is important for the safety of maritime navigation. In addition, accurate temperature measurement is also required for commercial transactions. Temperature and pressure define the density of liquid hydrogen, which is directly linked to trading interests. In this study, we developed and tested a liquid hydrogen temperature monitoring system that uses platinum resistance sensors with a nominal electrical resistance of approximately 1000 Ω at room temperature, PT-1000, for marine applications. The temperature measurements were carried out using a newly developed temperature monitoring system under different pressure conditions. The measured values are compared with a calibrated reference PT-1000 resistance thermometer. We confirm a measurement accuracy of ±50 mK in a pressure range of 0.1 MPa–0.5 MPa.  相似文献   
4.
An electrolyte Equation of State is presented by combining the Cubic Plus Association Equation of State,Mean Spherical Approximation and the Born equation.This new model uses experimental relative static permittivity,intend to predict well the activity coefficients of individual ions (ACI) and liquid densities of aqueous solutions.This new model is applied to model water + NaCl binary system and water + gas +NaCl ternary systems.The cation/anion-water interaction parameters of are obtained by fitting the exper-imental data of ACI,mean ionic activity coefficients (MIAC) and liquid densities of water + NaCl binary system.The cation/anion-gas interaction parameters are obtained by fitting the experimental data of gas solubilities in aqueous NaCl solutions.The modeling results show that this new model can correlate well with the phase equilibrium and volumetric properties.Without gas,predictions for ACI,MIAC,and liquid densities present relative average deviations of 1.3%,3.6% and 1.4% compared to experimental ref-erence values.For most gas-containing systems,predictions for gas solubilities present relative average deviations lower than 7.0%.Further,the contributions of ACI,and salting effects of NaCl on gases are ana-lyzed and discussed.  相似文献   
5.
In this study, AA7075 aluminum matrix composites reinforced with the combination of SiC, Al2O3, and B4C particles were fabricated by the liquid metal infiltration method. The effects of the relative ratio of B4C and Al2O3 particles on the microstructural, wear, and corrosion features of the composite samples were analyzed using XRD, light metal microscopy, SEM, EDS, Brinell hardness, ball-on-disc type tribometer, and potentiodynamic polarization devices. It was determined that infiltration occurred more successfully, and homogenously distributed particles with reduced porosity were obtained as the amount of Al2O3 increased. Worn surface studies revealed that the specimens were predominantly worn by abrasion and adhesion. The increase in B4C/Al2O3 ratio caused a decrease in the hardness and wear strength, whereas it increased the corrosion resistance.  相似文献   
6.
A novel CdS/CaFe2O4 (CS/CFO) heterogeneous p-n junction was created by thermal deposition of CaFe2O4 nanoparticles on CdS rods. The CS/CFO hetero-structured photocatalysts exhibited increasingly efficient visible light harvesting compared to the bare CdS. The CS/CFO composites also presented higher photocurrent and slower decay of photoluminescence, suggesting a better separation of the photo-generated electrons and holes. The photocatalytic H2 evolution quantity on the optimized CS/CFO composite from water in the presence of ethanol was up to 2200 μmol after 3-h visible light illumination, which is more than twice that of the pristine CdS. The chemical interaction between CdS and CaFe2O4 was confirmed by the shifts in the XPS peaks, which made it possible for the charge carriers to transfer across the p-n junction interface. This research highlights the importance of forming an interfacial p-n heterojunction between two semiconductors for efficient charge separation and improved photocatalytic performance.  相似文献   
7.
Hydrogenation of dibenzyltoluene (DBT) is of great significance for the application in liquid organic hydrogen carriers (LOHCs). We successfully develop Mg-based metal hydrides (Mg2NiH4, MgH2, and LaH3) reactive ball-milling for the hydrogenation of DBT. Mg-based metal hydrides milled with 500 min exhibit the best catalytic activity, the hydrogen uptake of DBT can reach 4.63 wt% at the first 4 h and finally achieve 5.70 wt% through 20 h, which is the first time to use hydrogen storage material as a catalyst for the hydrogenation of DBT. The excellent catalytic hydrogenation performance of Mg-based metal hydrides mostly originates from numerous catalytic activity centers formed at the surfaces of Mg2NiH4 nanoparticles in the MgH2 matrix. Inspired by this mechanism, more general metal hydrides can be explored for catalyzing the hydrogenation of LOHCs. The new application of Mg-based metal hydrides is beneficial to developing efficient LOHC based hydrogen storage systems and offers novel insights to hydride-based catalysts.  相似文献   
8.
Ferrites are materials of interest due to their broad applications in high technological devices and a lot of research has been focused to synthesize new ferrites. In this regard, an effort has been devoted to synthesize spinel Pr–Ni co-substituted strontium ferrites with a nominal formula of Sr1-xPrxFe2-yNiyO4 (0.0 ≤ x ≤ 0.1, 0.0 ≤ y ≤ 1.0). The cubic structure of pure and Pr–Ni co-substituted strontium ferrite samples calcinated at 1073 K for 3 h has been confirmed through X-ray diffraction (XRD). Average sizes of crystallites (18–25 nm) have been estimated from XRD analysis and nanometer particle sizes of synthesized ferrites have been further verified by scanning electron microscopy (SEM). SEM results have also shown that particles are mostly agglomerated and all the samples possess porosity. It has been observed that at 298 K, the values of resistivity (ρ) increase, while that of AC conductivity, dielectric loss, and dielectric constants decrease with increasing amounts of Pr3+ and Ni2+ ions. The values of dielectric parameters initially decrease with frequency and later become constant and can be explained on the basis of dielectric polarization. Electrochemical impedance spectroscopy (EIS) studies show that the charge transport phenomenon in ferrite materials is mainly controlled via grain boundaries. Overall, synthesized ferrite materials own enhanced resistivity values in the range of 1.38 × 109–1.94 × 109 Ω cm and minimum dielectric losses, which makes them suitable candidates for high frequency devices applications.  相似文献   
9.
《Ceramics International》2021,47(23):32882-32890
Transition metals doping has been proved to be a feasible way for tuning the physical properties on the surface and bulk of nanomaterials and also for the good performance in decontamination of emerging pollutants. In this context, doped samples of zinc tin oxide or zinc stannate nanoparticles (ZTO NPs) by several transition metals were synthesized in order to enhance the optical absorbance with the aims of reducing the band gap and therefore ameliorated their photocatalytic activity. They were characterized by the X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy, Raman spectroscopy and photoluminescence. The XRD patterns and the microscopic observations showed the formation of spherical nanoparticles with an average size of about 30 nm and highly pure ZTO phase with an inverse spinel structure. The Raman spectra were dominated by bands relatives to the F2g (2) and A1g symmetries modes of inverse spinel structure. The band gap Eg is estimated to be 3.75 eV for the undoped sample, and 3.67, 3.64, 3.78 and 3.21 eV, for 2% Fe, 2% Mg, 2% Gd, and 2% Mn doped ZTO samples, respectively.Furthermore, the undoped ZTO NPs have the intrinsic problem of recombination of photogenerated charge carriers. We have shown that the reduction of the band gap and oxygen vacancies resulting from the doping effect could be a useful tool for trapping and avoid the recombination of electrons coming from photosensitized rhodamine B (RhB) under visible light irradiation. Owing to the structural advantages and low band gap, 2% Mn doped ZTO NPs, with the kinetic rate constants k of 0.024 min−1, show enhanced performance for the elimination of RhB in aqueous solution compared to undoped and other doped ZTO NPs.  相似文献   
10.
《Ceramics International》2020,46(5):6129-6135
The design of functional anti-wetting ceramic coatings is always a bottleneck restricting the development of ceramic techniques. This study proposes a liquid phase synthesis method to fabricate α-Fe2O3 (III) ceramic powders with promising applications and introduces a facile electrophoretic deposition (EPD) technique to construct the corresponding functionalized hydrophobic films – superhydrophobic functionalized α-Fe2O3 ceramic films (SFOFS) with roughly even distribution and a high water contact angle (CA) of 169°±1° – followed by heat posttreatments. The microtopography and crystalline structures of the product were investigated by FESEM, EDX, and XRD techniques. The EPD controllability of SFOFS was studied by adjusting the EPD time and the applied field strengths. In addition, the SFOFS show excellent long-term anti-wetting properties for twenty-four months after undergoing a series of tests, including soaking, water droplet impacting, immersion by droplets with different surface tensions and exposure to different gases and relative humidity conditions, etc. This study substantially helps the design of other kinds of functional anti-wetting films through the proposed convenient method beyond the oxide limit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号