首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44710篇
  免费   4244篇
  国内免费   2783篇
电工技术   2752篇
技术理论   8篇
综合类   6138篇
化学工业   3091篇
金属工艺   2288篇
机械仪表   5449篇
建筑科学   3964篇
矿业工程   2377篇
能源动力   1329篇
轻工业   809篇
水利工程   1107篇
石油天然气   1155篇
武器工业   689篇
无线电   3429篇
一般工业技术   4887篇
冶金工业   2465篇
原子能技术   353篇
自动化技术   9447篇
  2024年   131篇
  2023年   613篇
  2022年   965篇
  2021年   1150篇
  2020年   1360篇
  2019年   1138篇
  2018年   1177篇
  2017年   1469篇
  2016年   1573篇
  2015年   1650篇
  2014年   2566篇
  2013年   2952篇
  2012年   2840篇
  2011年   3245篇
  2010年   2542篇
  2009年   2656篇
  2008年   2661篇
  2007年   2950篇
  2006年   2750篇
  2005年   2426篇
  2004年   1940篇
  2003年   1642篇
  2002年   1454篇
  2001年   1219篇
  2000年   1000篇
  1999年   878篇
  1998年   677篇
  1997年   611篇
  1996年   493篇
  1995年   489篇
  1994年   400篇
  1993年   297篇
  1992年   278篇
  1991年   201篇
  1990年   174篇
  1989年   198篇
  1988年   142篇
  1987年   71篇
  1986年   95篇
  1985年   70篇
  1984年   75篇
  1983年   54篇
  1982年   60篇
  1981年   43篇
  1980年   33篇
  1979年   32篇
  1978年   29篇
  1977年   26篇
  1964年   26篇
  1955年   36篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Electrocatalytic nitrogen reduction reaction (ENRR) offers a carbon-neutral process to fix nitrogen into ammonia, but its feasibility depends on the development of highly efficient electrocatalysts. Herein, we report that Fe ion grafted on MoO3 nanorods synthesized by an impregnation technique can efficiently enhance the electron harvesting ability and the selectivity of H+ during the NRR process in neutral electrolyte. In 0.1 M Na2SO4 solution, the electrocatalyst exhibited a remarkable NRR activity with an NH3 yield of 9.66 μg h?1 mg?1cat and a Faradaic efficiency (FE) of 13.1%, far outperforming the ungrafted MnO3. Density functional theory calculations revealed that the Fe sites are major activation centers along the alternating pathway.  相似文献   
2.
To satisfy arising energy needs and to handle the forthcoming worldwide climate transformation, the major research attention has been drawn to environmentally friendly, renewable and abundant energy resources. Hydrogen plays an ideal and significant role is such resources, due to its non-carbon based energy and production through clean energy. In this work, we have explored catalytic activity of a newly predicted haeckelite boron nitride quantum dot (haeck-BNQD), constructed from the infinite BN sheet, for its utilization in hydrogen production. Density functional theory calculations are employed to investigate geometry optimization, electronic and adsorption mechanism of haeck-BNQD using Gaussian16 package, employing the hybrid B3LYP and wB97XD functionals, along with 6–31G(d,p) basis set. A number of physical quantities such as HOMO/LUMO energies, density of states, hydrogen atom adsorption energies, Mulliken populations, Gibbs free energy, work functions, overpotentials, etc., have been computed and analysed in the context of the catalytic performance of haeck-BNQD for the hydrogen-evolution reaction (HER). Based on our calculations, we predict that the best catalytic performance will be obtained for H adsorption on top of the squares or the octagons of haeck-BNQD. We hope that our prediction of most active catalytic sites on haeck-BNQD for HER will be put to test in future experiments.  相似文献   
3.
本文主要总结了新冠疫情期间作者的电磁场理论课程在线教学经验。对比分析了录播和直播的优缺点后,选择录播教学方式。基于超星网络教学平台,展示了录播网络教学的具体措施,包括网上答疑和学习效果检查以及在线批改作业等。给出了网络教学可以为线下教学继续使用的方法和手段,为疫情结束后的正常教学提供了新的网络教学补充措施。  相似文献   
4.
In the present work, the bonding length, electronic structure, stability, and dehydrogenation properties of the Perovskite-type ZrNiH3 hydride, under different uniaxial/biaxial strains are investigated through ab-initio calculations based on the plane-wave pseudo-potential (PW-PP) approach. The findings reveal that the uniaxial/biaxial compressive and tensile strains are responsible for the structural deformation of the ZrNiH3 crystal structure, and its lattice deformation becomes more significant with decreasing or increasing the strain magnitude. Due to the strain energy contribution, the uniaxial/biaxial strain not only lowers the stability of ZrNiH3 but also decreases considerably the dehydrogenation enthalpy and decomposition temperature. Precisely, the formation enthalpy and decomposition temperature are reduced from ?67.73 kJ/mol.H2 and 521 K for non-strained ZrNiH3 up to ?33.73 kJ/mol.H2 and 259.5 K under maximal biaxial compression strain of ε = ?6%, and to ?50.99 kJ/mol.H2 and 392.23 K for the maximal biaxial tensile strain of ε = +6%. The same phenomenon has been also observed for the uniaxial strain, where the formation enthalpy and decomposition temperature are both decreased to ?39.36 kJ/mol.H2 and 302.78 K for a maximal uniaxial compressive strain of ε = - 12%, and to ?51.86 kJ/mol.H2 and 399 K under the maximal uniaxial tensile strain of ε = +12%. Moreover, the densities of states analysis suggests that the strain-induced variation in the dehydrogenation and structural properties of ZrNiH3 are strongly related to the Fermi level value of total densities of states. These ab-initio calculations demonstrate insightful novel approach into the development of Zr-based intermetallic hydrides for hydrogen storage practical applications.  相似文献   
5.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
6.
Lithium (Li) metal, as an appealing candidate for the next-generation of high-energy-density batteries, is plagued by its safety issue mainly caused by uncontrolled dendrite growth and infinite volume expansion. Developing new materials that can improve the performance of Li-metal anode is one of the urgent tasks. Herein, a new MXene derivative containing pure rutile TiO2 and N-doped carbon prepared by heat-treating MXene under a mixing gas, exhibiting high chemical activity in molten Li, is reported. The lithiation MXene derivative with a hybrid of LiTiO2-Li3N-C and Li offers outstanding electrochemical properties. The symmetrical cell assembling lithiation MXene derivative hybrid anode exhibits an ultra-long cycle lifespan of 2000 h with an overpotential of ≈30 mV at 1 mA cm−2, which overwhelms Li-based anodes reported so far. Additionally, long-term operations of 34, 350, and 500 h at 10 mA cm−2 can be achieved in symmetrical cells at temperatures of −10, 25, and 50 °C, respectively. Both experimental tests and density functional theory calculations confirm that the LiTiO2-Li3N-C skeleton serves as a promising host for Li infusion by alleviating volume variation. Simultaneously, the superlithiophilic interphase of Li3N guides Li deposition along the LiTiO2-Li3N-C skeleton to avoid dendrite growth.  相似文献   
7.
Perfluorosulfonic acid ionomer membranes have been widely used as proton conducting membranes in various electrochemical processes such as polymer electrolyte fuel cells and water electrolysis. While their thermal stability has been studied by thermogravimetry and analysis of low molecular weight products, their decomposition mechanism is little understood. In this study a newly developed methodology of thermal desorption and pyrolysis in combination with direct analysis in real time mass spectrometry is applied for Nafion membrane. An ambient ionization source and a high-resolution time-of-flight mass spectrometer enabled unambiguous assignment of gaseous products. Thermal decomposition is initiated by side chain detachment above 350°C, which leaves carbonyls on the main chain at the locations of the side chains. Perfluoroalkanes are released above 400°C by main chain scission and their further decomposition products dominate above 500 °C. DFT calculation of reaction energies and barrier heights of model compounds support proposed decomposition reactions.  相似文献   
8.
To realize ultimately efficient signal processing, it is necessary to replace electrical signal processing circuits with optical ones. The optical micro-resonator, which localizes light at a certain spot, is an essential component in optical signal processing. Single-crystal calcium fluoride (CaF2) is the most suitable material for a highly efficient optical micro-resonator. The CaF2 resonator can only be manufactured by ultra-precision machining processes, because its crystal anisotropy does not allow the application of chemical etching. However, the optical micro-resonator's performance depends definitely on the surface integrity.This study investigated the relationship between surface quality after ultra-precision machining and crystal anisotropy. Firstly, crack initiation was investigated on the (1 0 0), (1 1 0), and (1 1 1) planes using the micro-Vickers hardness test. Secondly, brittle-ductile transition was investigated by orthogonal cutting tests. Finally, cutting performance of cylindrical turning was evaluated, which could be a suitable method for manufacturing the CaF2 resonator. The most difficult point in cylindrical turning of CaF2 is that the crystalline plane and cutting direction vary continuously. In order to manufacture the CaF2 optical micro-resonator more efficiently, analysis was conducted on crack initiation and surface quality of all crystallographic orientations from the perspective of slip system and cleavage.  相似文献   
9.
With the emergence of distributed ledger technology (DLT), numerous practitioners and researchers have proclaimed its beneficial impact on supply chain transactions in the future. However, the vast majority of DLT initiatives are discontinued after a short period. With the full potential of DLT laying far down the road, especially managers in supply chain management (SCM) seek for short-term cost-saving effects of DLT in order to achieve long-term benefits of DLT in the future. However, the extant research has bypassed grounding long-term as well as short-term effects of DLT on supply chain transaction with empirical data. We address this shortcoming, following an abductive research approach and combining empirical data from a multiple case study design with the corresponding literature. Our study reveals that the effects of DLT on supply chain transactions are two-sided. We found six effects of DLT solutions that have a cost-reducing or cost avoidance impact on supply chain transactions. In addition, we found two effects that change the power distribution between buyers and suppliers in transactions and a single effect that reduces the dependency of supply chain transactions on third parties. While cost-reducing and avoidance as well as dependency-reducing effects are positive effects, the change in power distribution might come with disadvantages. With these findings, the paper provides the first empirical evidence of the impact of DLT on supply chain transactions, which will enable managers to improve their assessment of DLT usage in supply chains.  相似文献   
10.
ContextEnterprise software systems (e.g., enterprise resource planning software) are often deployed in different contexts (e.g., different organizations or different business units or branches of one organization). However, even though organizations, business units or branches have the same or similar business goals, they may differ in how they achieve these goals. Thus, many enterprise software systems are subject to variability and adapted depending on the context in which they are used.ObjectiveOur goal is to provide a snapshot of variability in large scale enterprise software systems. We aim at understanding the types of variability that occur in large industrial enterprise software systems. Furthermore, we aim at identifying how variability is handled in such systems.MethodWe performed an exploratory case study in two large software organizations, involving two large enterprise software systems. Data were collected through interviews and document analysis. Data were analyzed following a grounded theory approach.ResultsWe identified seven types of variability (e.g., functionality, infrastructure) and eight mechanisms to handle variability (e.g., add-ons, code switches).ConclusionsWe provide generic types for classifying variability in enterprise software systems, and reusable mechanisms for handling such variability. Some variability types and handling mechanisms for enterprise software systems found in the real world extend existing concepts and theories. Others confirm findings from previous research literature on variability in software in general and are therefore not specific to enterprise software systems. Our findings also offer a theoretical foundation for describing variability handling in practice. Future work needs to provide more evaluations of the theoretical foundations, and refine variability handling mechanisms into more detailed practices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号