首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13268篇
  免费   595篇
  国内免费   509篇
电工技术   651篇
综合类   732篇
化学工业   332篇
金属工艺   564篇
机械仪表   1580篇
建筑科学   419篇
矿业工程   330篇
能源动力   365篇
轻工业   118篇
水利工程   84篇
石油天然气   172篇
武器工业   163篇
无线电   774篇
一般工业技术   545篇
冶金工业   180篇
原子能技术   61篇
自动化技术   7302篇
  2024年   23篇
  2023年   45篇
  2022年   117篇
  2021年   141篇
  2020年   169篇
  2019年   190篇
  2018年   174篇
  2017年   278篇
  2016年   361篇
  2015年   396篇
  2014年   649篇
  2013年   756篇
  2012年   650篇
  2011年   814篇
  2010年   635篇
  2009年   802篇
  2008年   846篇
  2007年   953篇
  2006年   944篇
  2005年   817篇
  2004年   661篇
  2003年   659篇
  2002年   490篇
  2001年   421篇
  2000年   357篇
  1999年   360篇
  1998年   311篇
  1997年   250篇
  1996年   216篇
  1995年   171篇
  1994年   137篇
  1993年   96篇
  1992年   62篇
  1991年   51篇
  1990年   41篇
  1989年   51篇
  1988年   34篇
  1987年   25篇
  1986年   30篇
  1985年   65篇
  1984年   31篇
  1983年   28篇
  1982年   19篇
  1981年   18篇
  1980年   11篇
  1979年   3篇
  1977年   4篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
While creativity is essential for developing students’ broad expertise in Science, Technology, Engineering, and Math (STEM) fields, many students struggle with various aspects of being creative. Digital technologies have the unique opportunity to support the creative process by (1) recognizing elements of students’ creativity, such as when creativity is lacking (modeling step), and (2) providing tailored scaffolding based on that information (intervention step). However, to date little work exists on either of these aspects. Here, we focus on the modeling step. Specifically, we explore the utility of various sensing devices, including an eye tracker, a skin conductance bracelet, and an EEG sensor, for modeling creativity during an educational activity, namely geometry proof generation. We found reliable differences in sensor features characterizing low vs. high creativity students. We then applied machine learning to build classifiers that achieved good accuracy in distinguishing these two student groups, providing evidence that sensor features are valuable for modeling creativity.  相似文献   
2.
The grouping of pixels based on some similarity criteria is called image segmentation. In this paper the problem of color image segmentation is considered as a clustering problem and a fixed length genetic algorithm (GA) is used to handle it. The effectiveness of GA depends on the objective function (fitness function) and the initialization of the population. A new objective function is proposed to evaluate the quality of the segmentation and the fitness of a chromosome. In fixed length genetic algorithm the chromosomes have same length, which is normally set by the user. Here, a self organizing map (SOM) is used to determine the number of segments in order to set the length of a chromosome automatically. An opposition based strategy is adopted for the initialization of the population in order to diversify the search process. In some cases the proposed method makes the small regions of an image as separate segments, which leads to noisy segmentation. A simple ad hoc mechanism is devised to refine the noisy segmentation. The qualitative and quantitative results show that the proposed method performs better than the state-of-the-art methods.  相似文献   
3.
针对谱聚类融合模糊C-means(FCM)聚类的蛋白质相互作用(PPI)网络功能模块挖掘方法准确率不高、执行效率较低和易受假阳性影响的问题,提出一种基于模糊谱聚类的不确定PPI网络功能模块挖掘(FSC-FM)方法。首先,构建一个不确定PPI网络模型,使用边聚集系数给每一条蛋白质交互作用赋予一个存在概率测度,克服假阳性对实验结果的影响;第二,利用基于边聚集系数流行距离(FEC)策略改进谱聚类中的相似度计算,解决谱聚类算法对尺度参数敏感的问题,进而利用谱聚类算法对不确定PPI网络数据进行预处理,降低数据的维数,提高聚类的准确率;第三,设计基于密度的概率中心选取策略(DPCS)解决模糊C-means算法对初始聚类中心和聚类数目敏感的问题,并对预处理后的PPI数据进行FCM聚类,提高聚类的执行效率以及灵敏度;最后,采用改进的边期望稠密度(EED)对挖掘出的蛋白质功能模块进行过滤。在酵母菌DIP数据集上运行各个算法可知,FSC-FM与基于不确定图模型的检测蛋白质复合物(DCU)算法相比,F-measure值提高了27.92%,执行效率提高了27.92%;与在动态蛋白质相互作用网络中识别复合物的方法(CDUN)、演化算法(EA)、医学基因或蛋白质预测算法(MGPPA)相比也有更高的F-measure值和执行效率。实验结果表明,在不确定PPI网络中,FSC-FM适合用于功能模块的挖掘。  相似文献   
4.
An organization requires performing readiness-relevant activities to ensure successful implementation of an enterprise resource planning (ERP) system. This paper develops a novel approach to managing these interrelated activities to get ready for implementing an ERP system. The approach enables an organization to evaluate its ERP implementation readiness by assessing the degree to which it can achieve the interrelated readiness relevant activities using fuzzy cognitive maps. Based on the interrelationship degrees among the activities, the approach clusters the activities into manageable groups and prioritizes them. To help work out a readiness improvement plan, scenario analysis is conducted.  相似文献   
5.
The operational optimisation of coal-fired power units is important for saving energy and reducing losses in the electric power industry. One of the key issues is how to determine the benchmark values of the energy efficiency indexes of the units. Therefore, a new framework for determining these benchmark values is proposed, based on data mining methods. First, the energy efficiency key performance indicators (KPIs) associated with the net coal consumption rate (NCCR) were selected based on the domain knowledge. Second, the decision-making samples with minimal NCCR were acquired with the fuzzy C-means (FCM) clustering algorithm, and the corresponding clustering centres were employed as the benchmark values. Finally, based on the support vector regression (SVR) algorithm, the target values of the NCCR were obtained with the KPIs as input, and the energy saving potential was evaluated by comparing the target values with the historical values of the NCCR. An actual on-duty 1000 MW unit was taken as study unit, and the results show that the energy saving potential is remarkable when the operators adjust the KPIs based on the calculated benchmark values.  相似文献   
6.
7.
Assembly line balancing is important for the efficiency of the assembly process, however, a wide range of disruptions can break the current workload balance. Some researchers explored the task assignment plan for the assembly line balancing problem with the assumption that the assembly process is smooth with no disruption. Other researchers considered the impacts of disruptions, but they only explored the task re-assignment solutions for the assembly line re-balancing problem with the assumption that the re-balancing decision has been made already. There is limited literature exploring on-line adjustment solutions (layout adjustment and production rate adjustment) for an assembly line in a dynamic environment. This is because real-time monitoring of an assembly process was impossible in the past, and it is difficult to incorporate uncertainty factors into the balancing process because of the randomness and non-linearity of these factors. However, Industry 4.0 breaks the information barriers between different parts of an assembly line, since smart, connected products, which are enabled by advanced information and communication technology, can intelligently interact and communicate with each other and collect, process and produce information. Smart control of an assembly line becomes possible with the large amounts of real-time production data in the era of Industry 4.0, but there is little literature considering this new context. In this study, a fuzzy control system is developed to analyze the real-time information of an assembly line, with two types of fuzzy controllers in the fuzzy system. Type 1 fuzzy controller is used to determine whether the assembly line should be re-balanced to satisfy the demand, and type 2 fuzzy controller is used to adjust the production rate of each workstation in time to eliminate blockage and starvation, and increase the utilization of machines. Compared with three assembly lines without the proposed fuzzy control system, the assembly line with the fuzzy control system performs better, in terms of blockage ratio, starvation ratio and buffer level. Additionally, with the improvement of information transparency, the performance of an assembly line will be better. The research findings shed light on the smart control of the assembly process, and provide insights into the impacts of Industry 4.0 on assembly line balancing.  相似文献   
8.
Control of self-assembling systems at the micro- and nano-scale provides new opportunities for the engineering of novel materials in a bottom-up fashion. These systems have several challenges associated with control including high-dimensional and stochastic nonlinear dynamics, limited sensors for real-time measurements, limited actuation for control, and kinetic trapping of the system in undesirable configurations. Three main strategies for addressing these challenges are described, which include particle design (active self-assembly), open-loop control, and closed-loop (feedback) control. The strategies are illustrated using a variety of examples such as the design of patchy and Janus particles, the toggling of magnetic fields to induce the crystallization of paramagnetic colloids, and high-throughput crystallization of organic compounds in nanoliter droplets. An outlook of the future research directions and the necessary technological advancements for control of micro- and nano-scale self-assembly is provided.  相似文献   
9.
Image enhancement algorithms are commonly used to increase the contrast and visual quality of low-dose x-ray images. This paper proposes an automated enhancement method using soft fuzzy sets with a new decision-making scheme based on Dempster-Shafer theory of evidence for the visual interpretation of pneumonia malformation in low-dose x-ray images, called as XEFSDS. The XEFSDS model first generates an original source x-ray image into a complementary image, then each original and complement image is applied to the characterized image object and background areas of fuzzy space. The S-function is utilized to define fuzzy soft sets for the classification of gray level ambiguity in both images, and hence a decision criterion via Dempster-Shafer approach and fuzzy interval has been adapted to discriminate uncertainties on the pixel intensity and the spatial information. Modified membership grade operations have been performed on each object/background area, and Werner’s AND/OR operator (an aggregation operator) has been utilized to build a new membership function from two modified membership functions. Finally, an enhanced image is obtained from the new membership function via defuzzification. Experiments on different pneumonia X-ray images demonstrate that the XEFSDS scheme produces better results than the existing methods. To show the advantages of the XEFSDS scheme, we have executed a segmentation based examination on enhanced image for the detection of pneumonia malformation as well as abnormal lobe (lobar pneumonia) or bronchopneumonia.  相似文献   
10.
The automatic design of controllers for mobile robots usually requires two stages. In the first stage, sensorial data are preprocessed or transformed into high level and meaningful values of variables which are usually defined from expert knowledge. In the second stage, a machine learning technique is applied to obtain a controller that maps these high level variables to the control commands that are actually sent to the robot. This paper describes an algorithm that is able to embed the preprocessing stage into the learning stage in order to get controllers directly starting from sensorial raw data with no expert knowledge involved. Due to the high dimensionality of the sensorial data, this approach uses Quantified Fuzzy Rules (QFRs), that are able to transform low-level input variables into high-level input variables, reducing the dimensionality through summarization. The proposed learning algorithm, called Iterative Quantified Fuzzy Rule Learning (IQFRL), is based on genetic programming. IQFRL is able to learn rules with different structures, and can manage linguistic variables with multiple granularities. The algorithm has been tested with the implementation of the wall-following behavior both in several realistic simulated environments with different complexity and on a Pioneer 3-AT robot in two real environments. Results have been compared with several well-known learning algorithms combined with different data preprocessing techniques, showing that IQFRL exhibits a better and statistically significant performance. Moreover, three real world applications for which IQFRL plays a central role are also presented: path and object tracking with static and moving obstacles avoidance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号