首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
机械仪表   1篇
建筑科学   1篇
  2019年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Fluoride is a key ingredient of many psychiatric drugs like fluoxetine (Prozac®, Fluoxetine®). Pregnant women frequently use this drug as they suffer from depression and anxiety disorders during this period. Fluoxetine is able to reach the fetus through the placenta and passes to the newborn through milk. In the present study, female Wistar rats were treated with 5, 10, and 20 mg/L fluoxetine (containing 94% fluorides) from pregnancy day 10 to day 20. After delivery, the levels of the enzymatic antioxidants in the brain of their offspring at postnatal day 2 were measured. The results showed that, in all fluoxetine exposed groups compared with the control group, there was a significant decrease (P < 0.01) in the glutathione, catalase, glutathione S-transferases and potassium and a non- significant increase (P > 0.05) in the activity of malondialdehyde and creatine kinase. The results suggest that fluoxetine may be a developmental neurotoxicant due to presence of fluoride hence must be used carefully during pregnancy.  相似文献   
2.
This article examines the oxidative disposal of Prozac® (also known as Fluoxetine, FXT) through several oxidative processes with and without UV irradiation: for example, TiO2 alone, O3 alone, and the hybrid methods comprised of O3 + H2O2 (PEROXONE process), TiO2 + O3 and TiO2 + O3 + H2O2 at the laboratory scale. Results show a strong pH dependence of the adsorption of FXT on TiO2 and the crucial role of adsorption in the whole degradation process. Photolysis of FXT is remarkable only under alkaline pH. The heterogeneous photoassisted process removes 0.11 mM FXT (initial concentration) within ca. 60 min with a concomitant 50% mineralization at pH 11 (TiO2 loading, 0.050 g L−1). The presence of H2O2 enhances the mineralization further to >70%. UV/ozonation leads to the elimination of FXT to a greater extent than does UV/TiO2: i.e., 100% elimination of FXT is achieved by UV/O3 in the first 10 min of reaction and almost 97% mineralization is attained under UV irradiation in the presence of H2O2. The hybrid configuration UV + TiO2 + O3 + H2O2 enhances removal of dissolved organic carbon (DOC) in ca. 30 min leaving, however, an important inorganic carbon (IC) content. In all cases, the presence of H2O2 improves the elimination of DOC, but not without a detrimental effect on the biodegradability of FXT owing to the low organic carbon content in the final treated effluent, together with significant levels of inorganic byproducts remaining. The photoassisted TiO2/O3 hybrid method may prove to be an efficient combination to enhance wastewater treatment of recalcitrant drug pollutants in aquatic environments.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号