首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32205篇
  免费   1753篇
  国内免费   1414篇
电工技术   450篇
综合类   2024篇
化学工业   4287篇
金属工艺   4130篇
机械仪表   3193篇
建筑科学   5397篇
矿业工程   932篇
能源动力   1055篇
轻工业   442篇
水利工程   982篇
石油天然气   621篇
武器工业   160篇
无线电   1198篇
一般工业技术   7214篇
冶金工业   1534篇
原子能技术   287篇
自动化技术   1466篇
  2024年   77篇
  2023年   287篇
  2022年   583篇
  2021年   646篇
  2020年   758篇
  2019年   660篇
  2018年   584篇
  2017年   800篇
  2016年   890篇
  2015年   1003篇
  2014年   1529篇
  2013年   1908篇
  2012年   1625篇
  2011年   2279篇
  2010年   1736篇
  2009年   2080篇
  2008年   2005篇
  2007年   2366篇
  2006年   2033篇
  2005年   1770篇
  2004年   1477篇
  2003年   1355篇
  2002年   1216篇
  2001年   942篇
  2000年   803篇
  1999年   672篇
  1998年   579篇
  1997年   553篇
  1996年   397篇
  1995年   363篇
  1994年   273篇
  1993年   222篇
  1992年   182篇
  1991年   152篇
  1990年   133篇
  1989年   124篇
  1988年   81篇
  1987年   42篇
  1986年   31篇
  1985年   36篇
  1984年   36篇
  1983年   23篇
  1982年   25篇
  1981年   7篇
  1980年   10篇
  1979年   11篇
  1978年   3篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Fiber orientations play the decisive role in grinding process of woven ceramic matrix composites, but the influence of woven fibers in grinding process is not clear. This paper studies the surface quality and grinding force by comparing different woven surfaces. Through a series of experiments in optimized sampling conditions, we analyze characteristics of the material surface topography height, wave distribution and surface support properties in details. And we find some outstanding characteristics of the surface microstructure. We also study the influence of grinding processing parameters on surface microstructure. The results show that machining surface which contains more parallel fibers is rougher and more keenness than gauss surface. Grinding wheel speed and depth of cut have great influence on surface topography and surface support properties. And it is discovered that grinding forces are also highly dependent on fiber orientations. The mechanism of the grinding phenomena is also analyzed in this paper according to knowledge of fracture mechanics and mechanical damage phenomenology. The research obtained will be an important technical support on improving the processing quality of woven ceramic matrix composites.  相似文献   
2.
The environmental performance of 316L grade stainless steel, in the form of tensile specimens containing a single corrosion pit with various aspect ratios, under cyclic loading in aerated chloride solutions is investigated in this study. Results from environmental tests were compared and contrasted with those obtained using finite element analysis (FEA). Fractography of the failed specimens obtained from experiments revealed that fatigue crack initiation took place at the base of the shallow pit. The crack initiation shifted towards the shoulder and the mouth of the pit for pits of increasing depth. This process is well predicted by FEA, as the strain contour maps show that strain is the highest around the centric strip of the pit. However, for shallow pits, local strain is uniformly distributed around that strip but begins to concentrate more towards the shoulder and the mouth region for increasingly deep pits.  相似文献   
3.
Laboratory bioassays were conducted to evaluate alpha-cypermethrin and thiamethoxam for the control of adults, small larvae and large larvae of the khapra beetle Trogoderma granarium, and the yellow mealworm beetle Tenebrio molitor, on concrete. Factors such as dose (0.025 and 0.1 mg alpha-cypermethrin or thiamethoxam/cm2), exposure interval (1, 3 and 7 d), and formulation (alpha-cypermethrin SC and thiamethoxam WG) were evaluated. Apart from immediate assessment at end of exposure, an assessment of delayed mortality was performed with the survivors of the 7-d exposure by removing them from the treated substrate and keeping them on untreated surfaces for 7 more days. After the 7-d exposure, more T. granarium adults were dead on dishes treated with alpha-cypermethrin than with thiamethoxam. Small larvae were generally less susceptible than adults. After 7 d, small larval mortality reached 64.4% for alpha-cypermethrin, while for thiamethoxam it was <6%. Large T. granarium larvae were more tolerant than the small ones. Delayed mortality of T. granarium adults was generally high for both insecticides and doses, and ranged between 43.3 and 63.3% of those that were still alive immediately after the 7-d treatment. For both larval categories, delayed mortality was higher for larvae that had been previously exposed to alpha-cypermethrin, than with thiamethoxam. For T. molitor, after the 7-d exposure, significantly more adults were dead on dishes treated with alpha-cypermethrin than with thiamethoxam. For small larvae mortality was 38.9% at the lowest thiamethoxam dose, but in the other cases ranged between 88.9 and 95.6%. In the case of large larvae, the overall mortality was low in all tested combinations. Regarding delayed mortality of this species, it remained at low levels, for both adults and small larvae. Our results indicate that T. molitor was more susceptible than T. granarium in both insecticides tested, but alpha-cypermethrin was more effective than thiamethoxam.  相似文献   
4.
Abrasive water jet technology can be used for micro-milling using recently developed miniaturized nozzles. Abrasive water jet (AWJ) machining is often used with both the nozzle tip and workpiece submerged in water to reduce noise and contain debris. This paper compares the performance of submerged and unsubmerged abrasive water jet micro-milling of channels in 316L stainless steel and 6061-T6 aluminum at various nozzle angles and standoff distances. The effect of submergence on the diameter and effective footprint of AWJ erosion footprints was measured and compared. It was found that the centerline erosion rate decreased with channel depth due to the spreading of the jet as the effective standoff distance increased, and because of the growing effect of stagnation as the channel became deeper. The erosive jet spread over a larger effective footprint in air than in water, since particles on the jet periphery were slowed much more quickly in water due to increased drag. As a result, the width of a channel machined in air was wider than that in water. Moreover, it was observed that the instantaneous erosion rate decreased with channel depth, and that this decrease was a function only of the channel cross-sectional geometry, being independent of the type of metal, the jet angle, the standoff distance, and regardless of whether the jet was submerged or in air, in either the forward or backward directions. It is shown that submerged AWJM results in narrower features than those produced while machining in air, without a decrease in centerline etch rate.  相似文献   
5.
A solid-state photoelectrochemical (SSPEC) cell is an attractive approach for solar water splitting, especially when it comes to monolithic device design. In a SSPEC cell the electrodes distance is minimized, while the use of polymer-based membranes alleviates the need for liquid electrolytes, and at the same time they can separate the anode from the cathode. In this work, we have made and tested, firstly, a SSPEC cell with a Pt/C electrocatalyst as the cathode electrode, under purely gaseous conditions. The anode was supplied with air of 80% relative humidity (RH) and the cathode with argon. Secondly, we replaced the Pt/C cathode with a photocathode consisting of 2D photocatalytic g-C3N4, which was placed in tandem with the photoanode (tandem-SSPEC). The tandem configuration showed a three-fold enhancement in the obtained photovoltage and a steady-state photocurrent density. The mechanism of operation is discussed in view of recent advances in surface proton conduction in absorbed water layers. The presented SSPEC cell is based on earth-abundant materials and provides a way towards systems of artificial photosynthesis, especially for areas where water sources are scarce and electrical grid infrastructure is limited or nonexistent. The only requirements to make hydrogen are humidity and sunlight.  相似文献   
6.
Saw-tooth chip changes from macroscopically continuous ribbon to separated segments with the increase of cutting speed. The aim of this study is to find the correlations between chip morphology and machined surface micro-topography at different chip serration stages encountered in high speed cutting. High strength alloy steel AerMet100 was employed in orthogonal cutting experiments to obtain chips at different serration stages and corresponding machined surfaces. The chips and machined surfaces obtained were then examined with optical microscope (OM), scanning electron microscope (SEM), and white light interferometer (WLI). The result shows that chip serration causes micro-waves on machined surface, which increases machined surface roughness. However, wave amplitudes (surface roughness) at different serration stages are different. The principal factor influencing wave amplitude is the thickness of the sawed segment (tooth) of saw-tooth chip. With cutting parameters in this study, surface roughness contributed by chip serration ranges from 0.39 μm to 1.85 μm. This may bring on serious problems in the case of trying to replace grinding with high-speed cutting in rough machining. Some suggestions have been proposed to control the chip serration-caused surface roughness in high-speed cutting based on the results of the current study.  相似文献   
7.
Cyclic tension and bend tests were performed on heat-resistant 12Cr1MoV steel specimens in as-supplied condition as well as after Zr+ ion beam surface irradiation. Distinct differences in strain induced relief, as well in cracking pattern of modified surface layer were observed by optical microscopy and interference profilometry. Changes in subsurface layer are characterized by means of nano- and microindentation and fractography of fracture surfaces (with the help of scanning electron microscopy). It is shown that the main influence on mechanical properties is mostly induced by thermal treatment during irradiation rather than formation of a 2 μm thick layer doped with Zr. The differences in deformation behavior may be explained by physical mesomechanics concepts.  相似文献   
8.
The Externally Bonded Reinforcement (EBR) technique using Carbon Fiber-Reinforced Polymers (CFRP) has been commonly used to strengthen concrete structures in flexure. The use of prestressed CFRP material offers several advantages well-reported in the literature. Regardless of such as benefits, several studies on different topics are missing. The present work intends to contribute to the knowledge of two commercially available systems that differ on the type of anchorage: (i) the Mechanical Anchorage (MA), and (ii) the Gradient Anchorage (GA). For that purpose, an experimental program was carried out with twelve slabs monotonically tested under displacement control up to failure by using a four-point bending test configuration. The effect of type of anchorage system (MA and GA), prestrain level (0 and 0.4%), width (50 mm and 80 mm) and thickness (1.2 mm and 1.4 mm) of the CFRP laminate, and the surface preparation (grinded and sandblasted) on the flexural response were the main studied parameters. Better performance was observed for the slabs: (i) with prestressed laminates, (ii) for the MA system, and (iii) with sandblasted surface preparation.  相似文献   
9.
The use of ozone to increase the cation exchange capacity (CEC) of two chars produced from pyrolysis of Douglas fir (Pseudotsuga menziessii) and a control bituminous coal activated carbon (AC) is reported. Chars were produced from the wood fraction of Douglas fir (DFWC) and the bark (DFBC) at 500 °C using an auger driven reactor with a nitrogen sweep gas under mild vacuum. Five ozone treatment times, ranging from 5 min to 60 min, were investigated. The initial properties of each char were found to differ significantly from the other samples in terms of surface area, proximate composition, and elemental composition. DFWC did not show significant mass loss or temperature variation during ozone treatment; however, after 1 h of oxidation both DFBC and AC samples resulted in 20% and 30% mass loss, respectively, and reactor temperatures in excess of 60 °C. Analysis of the pore size distribution of each treatment shows that ozone treatment did not significantly affect small micropores after 30 min of treatment for any material, but did reduce the apparent surface area of mesopores. Increases in carboxylic groups were identified with ozone treatment and found to correlate strongly with changes in measured CEC. The formation of lactone was found to correlate positively with reactor temperature during oxidation. These results indicate that the properties of chars, including surface area, pore structure, and chemical composition, as well as reactor conditions strongly affect the ozone oxidation of chars.  相似文献   
10.
The surface chemistry and mineral liberation changes of a porphyry copper ore after high voltage pulse (HVP) electrical comminution have been investigated using X-ray photoelectron spectroscopy (XPS) and mineral liberation analysis (MLA). Previous studies suggest that electrical comminution has the potential to improve downstream flotation recoveries, due to increased mineral liberation. However, until now the effects on the surface chemistry have not been investigated in detail.The mineral liberation results showed that chalcopyrite was more liberated in the electrical comminution product than in mechanical comminution, noticeably in the coarser size fractions. The surface chemistry of pure chalcopyrite was investigated, using XPS, and high resolution scans of iron and sulphur showed that both comminution methods led to iron oxidising preferentially leaving behind a passivating film of copper sulphides. However, the HVP product oxidisation was more severe with more iron oxide being produced and further oxidation of the remaining copper sulphides into copper sulphate. An attrition grinding stage may be useful in removing the oxidised layer from the surface of the particles prior to flotation separation. This paper presents a new application of the HVP technology in hybrid procedures using electrical comminution and mechanical grinding to prepare the flotation feed, rather than using excessive pulse energy to fully disintegrate ore to the flotation size. Better liberation and flotation performance were achieved through the hybrid procedures than the comparative mechanical comminution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号