首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212197篇
  免费   17156篇
  国内免费   12634篇
电工技术   7917篇
技术理论   3篇
综合类   13303篇
化学工业   58054篇
金属工艺   20562篇
机械仪表   9705篇
建筑科学   7282篇
矿业工程   4895篇
能源动力   9084篇
轻工业   12865篇
水利工程   2320篇
石油天然气   9384篇
武器工业   1456篇
无线电   20585篇
一般工业技术   28738篇
冶金工业   9047篇
原子能技术   2752篇
自动化技术   24035篇
  2024年   535篇
  2023年   3525篇
  2022年   5684篇
  2021年   7646篇
  2020年   6130篇
  2019年   5555篇
  2018年   5282篇
  2017年   6344篇
  2016年   6746篇
  2015年   6831篇
  2014年   10907篇
  2013年   12193篇
  2012年   13427篇
  2011年   16428篇
  2010年   12831篇
  2009年   14524篇
  2008年   12942篇
  2007年   15356篇
  2006年   14375篇
  2005年   11316篇
  2004年   8762篇
  2003年   8007篇
  2002年   6373篇
  2001年   5042篇
  2000年   4745篇
  1999年   3886篇
  1998年   3053篇
  1997年   2463篇
  1996年   2148篇
  1995年   1759篇
  1994年   1551篇
  1993年   1151篇
  1992年   927篇
  1991年   725篇
  1990年   568篇
  1989年   459篇
  1988年   320篇
  1987年   238篇
  1986年   228篇
  1985年   186篇
  1984年   145篇
  1983年   97篇
  1982年   120篇
  1981年   94篇
  1980年   97篇
  1979年   60篇
  1978年   39篇
  1977年   35篇
  1976年   30篇
  1975年   32篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
1.
Due to the demand of miniaturization and integration for ceramic capacitors in electronic components market, TiO2-based ceramics with colossal permittivity has become a research hotspot in recent years. In this work, we report that Ag+/Nb5+ co-doped (Ag1/4Nb3/4)xTi1−xO2 (ANTOx) ceramics with colossal permittivity over a wide frequency and temperature range were successfully prepared by a traditional solid–state method. Notably, compositions of ANTO0.005 and ANTO0.01 respectively exhibit both low dielectric loss (0.040 and 0.050 at 1 kHz), high dielectric permittivity (9.2 × 103 and 1.6 × 104 at 1 kHz), and good thermal stability, which satisfy the requirements for the temperature range of application of X9R and X8R ceramic capacitors, respectively. The origin of the dielectric behavior was attributed to five dielectric relaxation phenomena, i.e., localized carriers' hopping, electron–pinned defect–dipoles, interfacial polarization, and oxygen vacancies ionization and diffusion, as suggested by dielectric temperature spectra and valence state analysis via XPS; wherein, electron-pinned defect–dipoles and internal barrier layer capacitance are believed to be the main causes for the giant dielectric permittivity in ANTOx ceramics.  相似文献   
2.
Hepatic fibrosis occurs when liver tissue becomes scarred from repetitive liver injury and inflammatory responses; it can progress to cirrhosis and eventually to hepatocellular carcinoma. Previously, we reported that neoagarooligosaccharides (NAOs), produced by the hydrolysis of agar by β-agarases, have hepatoprotective effects against acetaminophen overdose-induced acute liver injury. However, the effect of NAOs on chronic liver injury, including hepatic fibrosis, has not yet been elucidated. Therefore, we examined whether NAOs protect against fibrogenesis in vitro and in vivo. NAOs ameliorated PAI-1, α-SMA, CTGF and fibronectin protein expression and decreased mRNA levels of fibrogenic genes in TGF-β-treated LX-2 cells. Furthermore, downstream of TGF-β, the Smad signaling pathway was inhibited by NAOs in LX-2 cells. Treatment with NAOs diminished the severity of hepatic injury, as evidenced by reduction in serum alanine aminotransferase and aspartate aminotransferase levels, in carbon tetrachloride (CCl4)-induced liver fibrosis mouse models. Moreover, NAOs markedly blocked histopathological changes and collagen accumulation, as shown by H&E and Sirius red staining, respectively. Finally, NAOs antagonized the CCl4-induced upregulation of the protein and mRNA levels of fibrogenic genes in the liver. In conclusion, our findings suggest that NAOs may be a promising candidate for the prevention and treatment of chronic liver injury via inhibition of the TGF-β/Smad signaling pathway.  相似文献   
3.
In this article, pre-assembly hot-press pressure and thermal expansion effects in gas-diffusion layers (GDLs) are addressed to explore the practicalities of the constitutive model reported in the companion article. A facile technique is proposed to include deformation history dependent residual strain effects. The model is implemented in the numerical environment and compared with widely followed conventional models such as isotropic and orthotropic material models. With the normal and accelerated thermal expansion effects no significant variation in stresses or strains is reported with the compressible GDL model in contrast to the conventional incompressible form of the GDL model. The present work identifies the critical differences with advanced and extended variants of the model along with conventional GDL material models in terms of planar stress/strain distribution and the membrane response. Finally, the model is simulated for micro-cyclic stress loads of varying amplitudes that imitate the real working conditions of fuel cell. The inelastic energy dissipation in GDLs is predicted using the proposed model, which is utilized further to distinguish the safe (elastic) and unsafe (inelastic shakedown) operating limits. The inelastic collapse of GDLs is shown to be a active function of high amplitude micro-cyclic load with high initial clamping load.  相似文献   
4.
The current trends in energy were described, the main of which is the use of alternative energy sources, especially hydrogen. The most common methods of hydrogen accumulation were proposed: accumulation of compressed gaseous hydrogen in high-pressure tanks; accumulation of liquid hydrogen in cryogenic tanks; storing hydrogen in a chemically bound state; accumulation of gaseous hydrogen in carriers with a high specific surface area. Based on the combination of advantages and disadvantages, the most promising methods of accumulation were selected: storage of liquid hydrogen and storage of hydrogen in carriers with a high specific surface area. The main requirement for materials for hydrogen storage by these methods was revealed – a high specific surface area. Prospects for the development of waste-free low-emission technologies due to the recycling of secondary raw materials and the development of low-temperature technologies for the synthesis of functional and structural materials were substantiated. The applicability of large-scale ash and slag waste from coal-fired thermal power plants as a raw material for obtaining materials by low-temperature technologies was shown. The traditional ways of using ash and slag waste as a raw material, active additive and filler in the production of cements were described. Modern technologies for the production of innovative materials with a unique set of properties were presented, namely carbon nanotubes, silica aerogel and geopolymer materials. The prospect of using geopolymer matrices as a precursor for the synthesis of a number of materials was described; the most promising type of materials was selected – geopolymer foams, which are mainly used as sorbents for purifying liquids and gases or accumulating target products, as well as heat-insulating materials. The possibility of obtaining products of any shape and size on the basis of geopolymer matrices without high-temperature processing was shown. The special efficiency of the development of the technology of porous granules and powders obtained from a geopolymer precursor using various methods was substantiated. The obtained granules can be used in the following hydrogen storage technologies: direct accumulation of hydrogen in porous granules; creation of insulating layers for liquid hydrogen storage units.  相似文献   
5.
采用直流磁控溅射和后退火氧化工艺在p型GaAs单晶衬底上成功制备了n-VO_2/pGaAs异质结,研究了不同退火温度和退火时间对VO_2/GaAs异质结性能的影响,并分析其结晶取向、化学组分、膜层质量以及光电特性。结果表明,在退火时间2 h和退火温度693 K下能得到相变性能最佳的VO_2薄膜,相变前后电阻变化约2个数量级。VO_2/GaAs异质结在308 K、318 K和328 K温度下具有较好的整流特性,对应温度下的阈值跳变电压分别为6.9 V、6.6 V和6.2 V,该结果为基于VO_2相变特性的异质结光电器件的设计与应用提供了可行性。  相似文献   
6.
7.
《Ceramics International》2022,48(14):19818-19823
The aim of the present study was to examine the anti-coking and anti-carburizing behavior of amorphous AlPO4 coating. So, aluminum phosphate composition was synthesized by sol-gel process and applied on the AISI 304 stainless steel by dip coating technique. Anti-coking performance was examined in a tube furnace at 1000 °C for 30 min under Ethane (C2H6) atmosphere. Carburizing test was performed in a sealed charcoal medium at 1100 °C for a total of 30 h exposure time. Phase composition of the samples was analyzed by X-Ray Diffraction (XRD) after coking and carburizing tests. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS) were employed to study the morphology and elemental analysis of the samples after coke and carbon formation experiments. Microhardness indenter was applied on the cross section of the carbon-exposed specimens to plot the hardness profile through the carburizing zone. The results of the coking experiment revealed catalytic coke formed on the uncoated surface, while irregular spherical coke with no trace of catalytic coke was formed on the coated surface, indicating the great anti-coking performance of the amorphous AlPO4 coating. The results of pack-carburizing test demonstrated that the thickness of the carbide layer formed on the bare surface was ~10 times greater than that of the coated sample. Hardness measurement for the amorphous AlPO4 coated sample detected lower values compared to those for the uncoated one at all distances from the surface, indicating less carbon diffusion occurred beneath the coated surface. In overall, the results declared that the amorphous AlPO4 coating could be a good candidate for surface protection of stainless steel against catalytic coke formation and carbon diffusion.  相似文献   
8.
《Ceramics International》2022,48(17):24383-24392
We propose a novel approach for manufacturing dual-scale porosity alumina structures by UV curing-assisted 3D plotting of a specially formulated alumina feedstock using a thermo-regulated phase separable, photocurable camphene/triethylene glycol dimethacrylate (TEGDMA) vehicle. In particular, 3D plotting process was conducted at - 5 °C, and thus an alumina suspension prepared using liquid camphene/TEGDMA at room temperature could undergo phase separation, resulting in camphene crystals surrounded by walls comprised of liquid photopolymer enclosing alumina particles. To enhance the shape retention ability of extruded filaments, polystyrene (PS) polymer was used as the tackifier. The phase-separated feedrod could be extruded favorably through a nozzle and rapidly photopolymerized by UV light during the 3D plotting process. Three-dimensionally interconnected macropores were tightly constructed, which were separated by microporous alumina filaments, where micropores were created by the removal of camphene crystals via freeze-dying. The macroporosity of porous alumina ceramics was controlled by adjusting the distance between deposited filaments, while their microporosity was kept constant, leading to tightly tailored overall porosity and mechanical properties.  相似文献   
9.
《Ceramics International》2022,48(8):10601-10612
Using MgC2O4, Mg powders as raw materials and Ni(NO3)2?6H2O as a catalyst, CNTs/MgO composite powders were prepared by a catalytic combustion synthesis method. The CNTs/MgO composite powders were characterized by XRD, Raman spectroscopy, FESEM/EDS and HRTEM. The effects of catalyst content on the degree of graphitization and aspect ratio of the CNTs in composite powders were investigated. Moreover, the thermal shock resistance of low-carbon Al2O3–C refractories after adding the composite powder was investigated. The results indicated that the CNTs prepared with 1 wt% Ni(NO3)2?6H2O addition had a higher degree of graphitization and aspect ratio. In particular, the aspect ratio could reach approximately 200. The growth mechanism of hollow bamboo-like CNTs in the composite powders was proven to be a V-L-S mechanism. The thermal shock resistance of Al2O3–C samples could be improved significantly after adding CNTs/MgO composite powders. In particular, compared with CM0, the residual strength ratio of Al2O3–C samples with added 2.5 wt% composite powders could be increased 63.9%.  相似文献   
10.
Proper management of the liquid water and heat produced in proton exchange membrane (PEM) fuel cells remains crucial to increase both its performance and durability. In this study, a two-phase flow and multicomponent model, called two-fluid model, is developed in the commercial COMSOL Multiphysics® software to investigate the liquid water heterogeneities in large area PEM fuel cells, considering the real flow fields in the bipolar plate. A macroscopic pseudo-3D multi-layers approach has been chosen and generalized Darcy's relation is used both in the membrane-electrode assembly (MEA) and in the channel. The model considers two-phase flow and gas convection and diffusion coupled with electrochemistry and water transport through the membrane. The numerical results are compared to one-fluid model results and liquid water measurements obtained by neutron imaging for several operating conditions. Finally, according to the good agreement between the two-fluid and experimentation results, the numerical water distribution is examined in each component of the cell, exhibiting very heterogeneous water thickness over the cell surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号