首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   530篇
  免费   1篇
  国内免费   12篇
综合类   6篇
化学工业   63篇
金属工艺   101篇
机械仪表   258篇
能源动力   9篇
轻工业   5篇
无线电   1篇
一般工业技术   97篇
冶金工业   2篇
自动化技术   1篇
  2023年   8篇
  2022年   7篇
  2021年   6篇
  2020年   7篇
  2019年   5篇
  2018年   6篇
  2017年   6篇
  2016年   10篇
  2015年   9篇
  2014年   19篇
  2013年   110篇
  2012年   15篇
  2011年   34篇
  2010年   25篇
  2009年   27篇
  2008年   26篇
  2007年   29篇
  2006年   20篇
  2005年   28篇
  2004年   23篇
  2003年   16篇
  2002年   15篇
  2001年   17篇
  2000年   24篇
  1999年   9篇
  1998年   16篇
  1997年   5篇
  1996年   7篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
排序方式: 共有543条查询结果,搜索用时 31 毫秒
1.
Burnishing is used increasingly as a finishing operation which gives additional advantages such as increased hardness, fatigue strength, and wear resistance. Experimental work based on 34 factorial design was carried out to establish the effects of ball burnishing parameters on the surface hardness of high-strength low alloy steels (HSLA) dual-phase (DP) steel specimens. Statistical analysis of the results shows that the speed, feed, lubricant and ball diameter have significant effect on surface hardness.  相似文献   
2.
Compressors are being required to operate at increasingly severe conditions in order to increase efficiency, and with the transition from CFC to HFC and natural refrigerants, protective ferrous chloride films have been eliminated. To recover lost wear resistance and transition to oil-less operation, greater protection is sought through the application of hard coatings with enhanced tribological properties. Controlled reciprocating pin-on-disk experiments imitating the wrist pin-connecting rod interface were performed using a High Pressure Tribometer under unlubricated conditions. Specimens used for these experiments included WC/C coated cylindrical 52100 steel wrist pins and uncoated cast iron disks. The performance of WC/C with temperature variation as well as running-in characteristics were evaluated using surface profilometry and scanning electron microscopy. It was found that steady-state friction coefficients decreased with increasing temperature while friction coefficients increased during the running-in period. Also, wear decreased from testing in room temperature up to 80 °C and beyond that, increased due to unstable running-in. Based on the research presented in this work, hard coatings have the potential to replace oil in future compressors.  相似文献   
3.
The diamond-like carbon (DLC) multilayer films have been deposited by plasma CVD deposition onSi wafer substrate. The deposited films have then been post-annealed in vacuum at 250 °C for 2 h. Changes in internal stress, hardness, critical load, friction coefficient and wear have been investigated toassess the influence of annealing on mechanical and tribological properties of DLC multilayer films. At the same time, DLC single layerfilms are also deposited and annealed in the same method for a comparison.The results show that there is 28–33% decrease in internal stress and 10–13% decrease in hardness of theDLC single layer films after the anneal treatment. However, for the DLC multilayer films, there is 41–43% decreasein internal stress and less than 2% decrease in hardness. In addition, the annealed DLC multilayer filmhas the same friction and wear properties as that un-annealed film. This result indicates that the anneal treatment isan effective method for the DLC multilayer films to reduce the internal stress and to increase the critical load.The by-effect of the annealing, decrease of hardness and wear resistance of the multilayer film, can be restrictedby the multilayer structure.  相似文献   
4.
5.
In this research, Cr(N)/C(DLC) multilayered coatings were deposited on M2 steel substrates by an unbalanced magnetron sputtering technique. By varying the substrate rotation speed, four multilayered coatings with different bilayer thickness were produced. The bilayer thickness and structure of multilayered coatings were characterized by low-angle XRD, XPS depth profile, and cross-section TEM observation. The tribological investigation focused on the effect of layer thickness and tribological media on tribological property of the multilayer coatings against Al counterface. A pin-on-disc tribometer with a tribological medium container was used to investigate the wear behaviours of the four multilayered coatings under dry and wet (distilled water and S500 coolant) sliding. A stylus surface profilometer was used to measure wear rate. The investigation of wear tracks and wear mechanism was performed using Scanning Electron Microscopy (SEM). The research results showed that coatings with different bilayer period performed different tribological behaviour. The proper tribological media applied in the wear tests could improve the wear properties of multilayer coatings.  相似文献   
6.
从改善润滑性能出发,研制了一种在基础油中添加纳米碳酸钙粒子,用以提高金属摩擦学性能的新型润滑剂。通过X射线光电子能谱法得出:含有纳米碳酸钙粒子的润滑油,在摩擦过程中通过碳酸钙、氧化钙、钙三种物质共同作用提高金属的摩擦学性能。  相似文献   
7.
Sliding, abrasive, and impact wear tests were performed on chromium nitride (CrN)-based coatings deposited on mirror-polished M2 high speed steel substrates by the novel high power impulse magnetron sputtering (HIPIMS) utilising high peak cathode powers densities of 3000 W cm−2. The coatings were compared to single layer CrN and multilayer superlattice CrN/NbN coatings deposited by the arc bond sputtering (ABS) technique designed to improve the coating substrate adhesion by a combined steered cathodic arc/unbalanced magnetron (UBM) sputtering process. The substrates were metal ion etched using non-reactive HIPIMS or steered cathodic arc at a substrate bias voltage of −1200 V. Subsequently a 2- to 3-μm thick CrN or CrN/NbN coating was deposited by reactive HIPIMS or UBM. No bias was used during the HIPIMS deposition, while the bias during UBM growth was in the range 75-100 V. The ion saturation current measured by a flat electrostatic probe reached values of 50 mA cm−2 peak for HIPIMS and 1 mA cm−2 continuous during UBM deposition. The microstructure of the HIPIMS coatings observed by transmission electron microscopy was fully dense in contrast to the voided columnar structure observed in conventional UBM sputtered CrN and CrN/NbN. The sliding wear coefficients of the HIPIMS CrN films of 2.3×10−16 m3 N−1 m−1 were lower by a factor of 4 and the roughness of the wear track was significantly reduced compared to the UBM-deposited CrN. The abrasive wear coefficient of the HIPIMS coating was 2.2×10−13 m3 N−1 m−1 representing an improvement by a factor of 3 over UBM deposited CrN and a wear resistance comparable to that of the superlattice CrN/NbN. The adhesion of the HIPIMS deposited CrN was comparable to state-of-the-art ABS technology.  相似文献   
8.
A comprehensive model for the material removal in a chemical mechanical polishing (CMP) process is presented in which both chemical and mechanical effects are taken into consideration. The chemical effects come into play through the formation of chemically modified surface layer on the wafer surface that, in turn, is removed mechanically by the plastic deformation induced by slurry particles. This model describes the influence of most, if not all, variables involved in the CMP process including slurry characteristics (solid loading, particle size and distribution, modulus), pad properties (modulus, hardness, asperity sizes and distribution) and processing conditions (down-pressure, velocity). Although more elaborate experimental verification of the model is yet to follow, this model appears to be capable of explaining many experimental observations on both oxide and metal CMP that, otherwise, could not be explained properly.  相似文献   
9.
In this paper, the influence of single walled carbon nano tubes (SWCNTs) addition on the tribological properties of the polyimide (PI) films on silicon substrate was studied. PI films, with and without SWCNTs, were spin coated onto the Si surface. Coefficient of friction and wear durability were characterized using a ball-on-disk tribometer by employing a 4 mm diameter Si3N4 ball sliding against the film, at a contact pressure of ∼370 MPa, and a sliding velocity of 0.042 ms−1. Water contact angle, AFM topography, and nano-indentation tests were conducted to study the physical and mechanical properties of the films. SWCNTs marginally increased the water contact angle of PI film. The addition of SWCNTs to PI has increased the hardness and elastic modulus of pristine PI films by 60–70%. The coefficient of friction of PI films increased slightly (∼20%) after the addition of SWCNTs, whereas, there was at least two-fold increase in the wear life of the film based on the film failure condition of coefficient of friction higher than 0.3. However, the film did not show any sign of wear even after 100,000 cycles of rotation indicating its robustness. This increase in the wear durability due to the addition of the SWCNTs is believed to be because of the improvement in the load-bearing capacity of the composite film and sliding induced microstructural changes of the composite film.  相似文献   
10.
以弹性轴的多柔体动力学分析为基础,通过ADAMS与MATLAB联合仿真,解决了计入轴倾斜时弹性轴-轴承系统在正弦和冲击激励力作用下的动力学和摩擦学求解问题.主要结论是:考虑轴倾斜时,轴-轴承系统一阶固有频率略有下降,二阶固有频率略有上升;动力学响应幅度增大.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号