首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1703篇
  免费   138篇
  国内免费   147篇
电工技术   18篇
综合类   33篇
化学工业   1112篇
金属工艺   123篇
机械仪表   65篇
建筑科学   24篇
轻工业   438篇
石油天然气   1篇
无线电   80篇
一般工业技术   56篇
冶金工业   10篇
原子能技术   26篇
自动化技术   2篇
  2024年   8篇
  2023年   38篇
  2022年   322篇
  2021年   321篇
  2020年   87篇
  2019年   83篇
  2018年   59篇
  2017年   44篇
  2016年   88篇
  2015年   104篇
  2014年   132篇
  2013年   109篇
  2012年   108篇
  2011年   99篇
  2010年   71篇
  2009年   44篇
  2008年   52篇
  2007年   25篇
  2006年   32篇
  2005年   58篇
  2004年   42篇
  2003年   8篇
  2002年   27篇
  2001年   13篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1980年   3篇
排序方式: 共有1988条查询结果,搜索用时 15 毫秒
1.
Xanthohumol (XH) is an important prenylated flavonoid that is found within the inflorescence of Humulus lupulus L. (Hop plant). XH is an important ingredient in beer and is considered a significant bioactive agent due to its diverse medicinal applications, which include anti-inflammatory, antimicrobial, antioxidant, immunomodulatory, antiviral, antifungal, antigenotoxic, antiangiogenic, and antimalarial effects as well as strong anticancer activity towards various types of cancer cells. XH acts as a wide ranging chemopreventive and anticancer agent, and its isomer, 8-prenylnaringenin, is a phytoestrogen with strong estrogenic activity. The present review focuses on the bioactivity of XH on various types of cancers and its pharmacokinetics. In this paper, we first highlight, in brief, the history and use of hops and then the chemistry and structure–activity relationship of XH. Lastly, we focus on its prominent effects and mechanisms of action on various cancers and its possible use in cancer prevention and treatment. Considering the limited number of available reviews on this subject, our goal is to provide a complete and detailed understanding of the anticancer effects of XH against different cancers.  相似文献   
2.
4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a major active metabolite of bisphenol A (BPA), is generated in the mammalian liver. Some studies have suggested that MBP exerts greater toxicity than BPA. However, the mechanism underlying MBP-induced pancreatic β-cell cytotoxicity remains largely unclear. This study demonstrated the cytotoxicity of MBP in pancreatic β-cells and elucidated the cellular mechanism involved in MBP-induced β-cell death. Our results showed that MBP exposure significantly reduced cell viability, caused insulin secretion dysfunction, and induced apoptotic events including increased caspase-3 activity and the expression of active forms of caspase-3/-7/-9 and PARP protein. In addition, MBP triggered endoplasmic reticulum (ER) stress, as indicated by the upregulation of GRP 78, CHOP, and cleaved caspase-12 proteins. Pretreatment with 4-phenylbutyric acid (4-PBA; a pharmacological inhibitor of ER stress) markedly reversed MBP-induced ER stress and apoptosis-related signals. Furthermore, exposure to MBP significantly induced the protein phosphorylation of JNK and AMP-activated protein kinase (AMPK)α. Pretreatment of β-cells with pharmacological inhibitors for JNK (SP600125) and AMPK (compound C), respectively, effectively abrogated the MBP-induced apoptosis-related signals. Both JNK and AMPK inhibitors also suppressed the MBP-induced activation of JNK and AMPKα and of each other. In conclusion, these findings suggest that MBP exposure exerts cytotoxicity on β-cells via the interdependent activation of JNK and AMPKα, which regulates the downstream apoptotic signaling pathway.  相似文献   
3.
Based on the potential therapeutic value in targeting mitochondria and the fluorophore tracing ability, a fluorescent mitochondria-targeted organic arsenical PDT-PAO-F16 was fabricated, which not only visualized the cellular distribution, but also exerted anti-cancer activity in vitro and in vivo via targeting pyruvate dehydrogenase complex (PDHC) and respiratory chain complexes in mitochondria. In details, PDT-PAO-F16 mainly accumulated into mitochondria within hours and suppressed the activity of PDHC resulting in the inhibition of ATP synthesis and thermogenesis disorder. Moreover, the suppression of respiratory chain complex I and IV accelerated the mitochondrial dysfunction leading to caspase family-dependent apoptosis. In vivo, the acute promyelocytic leukemia was greatly alleviated in the PDT-PAO-F16 treated group in APL mice model. Our results demonstrated the organic arsenical precursor with fluorescence imaging and target-anticancer efficacy is a promising anticancer drug.  相似文献   
4.
Targeting the tumor cell mitochondrion could produce novel anticancer agents. We designed an aryl−urea fatty acid ( 1 g ; 16({[4-chloro-3-(trifluoromethyl)phenyl]carbamoyl}amino)hexadecanoic acid) that disrupted the mitochondrion and decreased MDA-MB-231 breast cancer cell viability. To optimize the aryl−ureas the present study evaluated mitochondrial targeting by 1 g analogues containing alkyl chains between 10–17 carbons. Using the dye JC-1, the C12−C17 analogues efficiently disrupted the mitochondrial membrane potential (IC50s 3.5±1.2 to 7.6±1.1 μM) and impaired ATP production; shorter analogues were less active. 7-Aminoactinomycin D/annexin V staining and flow cytometry showed that these agents activated the killing mechanisms of necrosis and apoptosis to varying extents (7-aminoactinomycin D/annexin V staining ratios 4.3–6.0). Indeed, 1 g and its C17 analogue preferentially activated necrosis and apoptosis, respectively (ratios 2.1 and 16). Taken together, alkyl chain length is a determinant of mitochondrial targeting by aryl−ureas and can be varied to develop analogues that activate apoptosis or necrosis in a regulated fashion.  相似文献   
5.
程硕  王伟  谈明光  陈建敏  张桂林  李燕 《核技术》2006,29(3):182-188
通过ICP-MS测定了上海市吴淞地区大气PM2.5水溶成分金属元素含量,通过四唑盐(MTT)测定细胞存活率,通过超氧化歧化酶(SOD)和丙二醛(MDA)两个指标测定细胞氧化损伤,琼脂糖凝胶电泳测定细胞内DNA损伤,流式细胞仪(Flow cytometry)检测细胞凋亡和周期等实验研究了大气PM2.5水溶成分的细胞毒性.实验结果表明:PM2.5可溶成分中Zn元素含量最高,PM2.5在一定浓度范围内能导致细胞死亡,引起细胞的氧化损伤,影响DNA的复制,阻碍细胞增殖,但没有诱导细胞凋亡.PM2.5中可溶金属离子对细胞毒性表现为联合作用.  相似文献   
6.
Melanoma is the deadliest form of skin cancer and accounts for about three quarters of all skin cancer deaths. Especially at an advanced stage, its treatment is challenging, and survival rates are very low. In previous studies, we showed that the constituents of the roots of Onosma paniculata as well as a synthetic derivative of the most active constituent showed promising results in metastatic melanoma cell lines. In the current study, we address the question whether we can generate further derivatives with optimized activity by synthesis. Therefore, we prepared 31, mainly novel shikonin derivatives and screened them in different melanoma cell lines (WM9, WM164, and MUG-Mel2 cells) using the XTT viability assay. We identified (R)-1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-4-methylpent-3-enyl 2-cyclopropyl-2-oxoacetate as a novel derivative with even higher activity. Furthermore, pharmacological investigations including the ApoToxGloTM Triplex assay, LDH assay, and cell cycle measurements revealed that this compound induced apoptosis and reduced cells in the G1 phase accompanied by an increase of cells in the G2/M phase. Moreover, it showed hardly any effects on the cell membrane integrity. However, it also exhibited cytotoxicity against non-tumorigenic cells. Nevertheless, in summary, we could show that shikonin derivatives might be promising drug leads in the treatment of melanoma.  相似文献   
7.
Proximal tubular (PT) acidosis, which alkalinizes the urinary filtrate, together with Ca2+ supersaturation in PT can induce luminal calcium phosphate (CaP) crystal formation. While such CaP crystals are known to act as a nidus for CaP/calcium oxalate (CaOx) mixed stone formation, the regulation of PT luminal Ca2+ concentration ([Ca2+]) under elevated pH and/or high [Ca2+] conditions are unknown. Since we found that transient receptor potential canonical 3 (TRPC3) knockout (KO; -/-) mice could produce mild hypercalciuria with CaP urine crystals, we alkalinized the tubular pH in TRPC3-/- mice by oral acetazolamide (0.08%) to develop mixed urinary crystals akin to clinical signs of calcium nephrolithiasis (CaNL). Our ratiometric (λ340/380) intracellular [Ca2+] measurements reveal that such alkalization not only upsurges Ca2+ influx into PT cells, but the mode of Ca2+ entry switches from receptor-operated to store-operated pathway. Electrophysiological experiments show enhanced bicarbonate related current activity in treated PT cells which may determine the stone-forming phenotypes (CaP or CaP/CaOx). Moreover, such alkalization promotes reactive oxygen species generation, and upregulation of calcification, inflammation, fibrosis, and apoptosis in PT cells, which were exacerbated in absence of TRPC3. Altogether, the pH-induced alteration of the Ca2+ signaling signature in PT cells from TRPC3 ablated mice exacerbated the pathophysiology of mixed urinary stone formation, which may aid in uncovering the downstream mechanism of CaNL.  相似文献   
8.
Myocardial infarction (MI) remains the leading cause of death in the western world. Despite advancements in interventional revascularization technologies, many patients are not candidates for them due to comorbidities or lack of local resources. Non-invasive approaches to accelerate revascularization within ischemic tissues through angiogenesis by providing Vascular Endothelial Growth Factor (VEGF) in protein or gene form has been effective in animal models but not in humans likely due to its short half-life and systemic toxicity. Here, we tested the hypothesis that PR1P, a small VEGF binding peptide that we developed, which stabilizes and upregulates endogenous VEGF, could be used to improve outcome from MI in rodents. To test this hypothesis, we induced MI in mice and rats via left coronary artery ligation and then treated animals with every other day intraperitoneal PR1P or scrambled peptide for 14 days. Hemodynamic monitoring and echocardiography in mice and echocardiography in rats at 14 days showed PR1P significantly improved multiple functional markers of heart function, including stroke volume and cardiac output. Furthermore, molecular biology and histological analyses of tissue samples showed that systemic PR1P targeted, stabilized and upregulated endogenous VEGF within ischemic myocardium. We conclude that PR1P is a potential non-invasive candidate therapeutic for MI.  相似文献   
9.
Interleukin (IL)-33 is a member of the interleukin (IL)-1 family of cytokines linked to the development of inflammatory conditions and cancer in the gastrointestinal tract. This study is designed to investigate whether IL-33 has a direct effect on human gastric epithelial cells (GES-1), the human gastric adenocarcinoma cell line (AGS), and the gastric carcinoma cell line (NCI-N87) by assessing its role in the regulation of cell proliferation, migration, cell cycle, and apoptosis. Cell cycle regulation was also determined in ex vivo gastric cancer samples obtained during endoscopy and surgical procedures. Cell lines and tissue samples underwent stimulation with rhIL-33. Proliferation was assessed by XTT and CFSE assays, migration by wound healing assay, and apoptosis by caspase 3/7 activity assay and annexin V assay. Cell cycle was analyzed by means of propidium iodine assay, and gene expression regulation was assessed by RT-PCR profiling. We found that IL-33 has an antiproliferative and proapoptotic effect on cancer cell lines, and it can stimulate proliferation and reduce apoptosis in normal epithelial cell lines. These effects were also confirmed by the analysis of cell cycle gene expression, which showed a reduced expression of pro-proliferative genes in cancer cells, particularly in genes involved in G0/G1 and G2/M checkpoints. These results were confirmed by gene expression analysis on bioptic and surgical specimens. The aforementioned results indicate that IL-33 may be involved in cell proliferation in an environment- and cell-type-dependent manner.  相似文献   
10.
Primary open-angle glaucoma (POAG) constitutes the most common type of glaucoma. Emerging evidence suggests that Endoplasmic Reticulum (ER) stress and the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-mediated Unfolded Protein Response (UPR) signaling pathway play a key role in POAG pathogenesis. Thus, the main aim of the study was to evaluate the effectiveness of the PERK inhibitor LDN-0060609 in cellular model of glaucoma using primary human trabecular meshwork (HTM) cells. To evaluate the level of the ER stress marker proteins, Western blotting and TaqMan gene expression assay were used. The cytotoxicity was measured by XTT, LDH assays and Giemsa staining, whereas genotoxicity via comet assay. Changes in cell morphology were assessed by phase-contrast microscopy. Analysis of apoptosis was performed by caspase-3 assay and flow cytometry (FC), whereas cell cycle progression by FC. The results obtained have demonstrated that LDN-0060609 triggered a significant decrease of ER stress marker proteins within HTM cells with induced ER stress conditions. Moreover, LDN-0060609 effectively increased viability, reduced DNA damage, increased proliferation, restored normal morphology, reduced apoptosis and restored normal cell cycle distribution of HTM cells with induced ER stress conditions. Thereby, PERK inhibitors, such as LDN-0060609, may provide an innovative, ground-breaking treatment strategy against POAG.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号