首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   35篇
  国内免费   8篇
电工技术   5篇
综合类   16篇
化学工业   139篇
金属工艺   4篇
机械仪表   74篇
建筑科学   3篇
轻工业   79篇
无线电   22篇
一般工业技术   47篇
原子能技术   2篇
自动化技术   5篇
  2023年   13篇
  2022年   42篇
  2021年   50篇
  2020年   15篇
  2019年   17篇
  2018年   9篇
  2017年   9篇
  2016年   3篇
  2015年   20篇
  2014年   20篇
  2013年   22篇
  2012年   27篇
  2011年   14篇
  2010年   15篇
  2009年   18篇
  2008年   16篇
  2007年   14篇
  2006年   12篇
  2005年   9篇
  2004年   14篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
排序方式: 共有396条查询结果,搜索用时 15 毫秒
1.
The value of bone marrow aspirate concentrates for treatment of human knee cartilage lesions is unclear. Most of the studies were performed with intra-articular injections. However, subchondral bone plays an important role in the progression of osteoarthritis. We investigated by a literature review whether joint, subchondral bone, or/and scaffolds implantation of fresh autologous bone marrow aspirate concentrated (BMAC) containing mesenchymal stem cells (MSCs) would improve osteoarthritis (OA). There is in vivo evidence that suggests that all these different approaches (intra-articular injections, subchondral implantation, scaffolds loaded with BMAC) can improve the patient. This review analyzes the evidence for each different approach to treat OA. We found that the use of intra-articular injections resulted in a significant relief of pain symptoms in the short term and was maintained in 12 months. However, the clinical trials indicate that the application of autologous bone marrow concentrates in combination with scaffolds or in injection in the subchondral bone was superior to intra-articular injection for long-term results. The tendency of MSCs to differentiate into fibrocartilage affecting the outcome was a common issue faced by all the studies when biopsies were performed, except for scaffolds implantation in which some hyaline cartilage was found. The review suggests also that both implantation of subchondral BMAC and scaffolds loaded with BMAC could reduce the need for further surgery.  相似文献   
2.
硫酸软骨素生产新工艺的研究   总被引:16,自引:0,他引:16  
制备硫酸软骨素新工艺利用双酶酶解法提取。设计了正交试验,得到最优化反应条件。最优反应条件为温度50℃,pH8.6-8.9,加酶量0.03g/d1,收率达17.84%。  相似文献   
3.
Doube M  Firth EC  Boyde A 《Scanning》2005,27(5):219-226
Combined backscattered electron scanning electron microscopy (BSE SEM) and confocal scanning laser microscopy (CSLM) have been used to put tissue mineralization data into the context of soft tissue histology and fluorescent label information. Mineralization density (Dm) and linear accretion rate (LAR) are quantifiable parameters associated with mineralizing fronts within calcified tissues. Quantitative BSE (qBSE) may be used to determine Dm, while CSLM may be used to detect label fluorescence from which LAR is calculated. Eighteen-month old Thoroughbred horses received single calcein injections 19 and 8 days prior to euthanasia, labeling sites of active mineralization with fluorescent bands. Confocal scanning laser microscopy images of articular calcified cartilage (ACC) from distal third metacarpal condyles were registered to qBSE images of the same sites using an in-house program. ImageJ and Sync Windows enabled the simultaneous collection of LAR and Dm data. The repeatability of the registration and measurement protocols was determined. Dm profiles between calcein labels were explored for an association with time. Dm was 119.7 +/- 24.5 (mean +/- standard deviation) gray levels (where 0 = backscattering from monobrominated and 255 from monoiodinated dimethacrylate standards, respectively), while modal and maximum LAR were 0.45 and 3.45 microm/day, respectively. Coefficients of variation (CV) for Dm were 0.70 and 0.77% with and without repeat registration, respectively; CVs for LAR were 1.90 and 2.26% with and without repeat registration, respectively. No relationship was identified between Dm and time in the 11-day interlabel interval. Registration of CSLM to qBSE images is sufficiently repeatable for quantitative studies of equine ACC.  相似文献   
4.
Recently it has been suggested that polymeric cryoprotectants might be usefully employed for reducing ice crystal size during ultrastructural and analytical studies of frozen biological tissues. Furthermore, it was reported that they have little physiological effect and cause negligible structural changes in the tissue. Our experiences with one such polymer, polyvinyl pyrrolidone (PVP), in the cryopreservation of mature plant roots prepared for electron microscopy, have led us to conclude that preservation deep into the structure of this tissue is not improved. Even short periods of exposure of tissue to polymer cause rapid withdrawal of water from vacuolated cells of plant roots, resulting in shrinkage and collapse. Low temperature techniques have confirmed that little if any improvement in the reduction of ice crystal size results if the root is first treated with PVP.  相似文献   
5.
6.
The use of hydrogel in cartilage tissue engineering is especially popular due to its high hydrophilic property which is similar to native cartilage matrix. Alginate hydrogel was used as a transient scaffold material to facilitate chondrocyte proliferation into a three‐dimensional scaffold‐free living hyaline cartilaginous graft (LhCG). As LhCG is purely cell‐based and has a marked resemblance to native hyaline cartilage, it served as an excellent in vitro platform for studying the endochondral ossification pathway. Due to the complexity of events involved throughout endochondral ossification, this study only focuses on early stages of the process where it involves chondrocyte hypertrophy and blood vessel invasion. Human umbilical vein endothelial cells (HUVECs) were selected as the target cells for possible endothelialization in the LhCG template. They were seeded onto the LhCG construct and subjected to vascular endothelial growth factor (VEGF) treatment. Results suggested that VEGF is indeed a potent driving force for initiation of the endochondral pathway. It alone is sufficient to induce hypertrophy in chondrocytes and the corresponding expression of osteogenic genes with or without the presence of HUVECs in the LhCG template. On the other hand, the effect of HUVECs in the LhCG system was less evident. It is hypothesized that this is attributed to the preservation of anti‐angiogenic properties in primary chondrocytes from the LhCG construct, inhibiting HUVECs from endothelialization in the LhCG+HUVEC construct. Based on the outcome from this study, it is recommended that hypertrophy in chondrocytes should be induced prior to endothelial cell introduction so that the microenvironment will be altered to favor angiogenesis within the cartilaginous template. © 2013 Society of Chemical Industry  相似文献   
7.
In this study, injectable PEG-based hydrogels containing Laponite particles with mechanical and structural properties close to the natural articular cartilage are introduced. The nanocomposites are fabricated by imide ring opening reactions utilizing synthesized copolymers containing PEG blocks and nanoclay through a two-step thermal poly-(amic acid) process. Butane diamine is used as nucleophilic reagent and hydrogels with interconnected pores with sizes in the range of 100–250?µm are prepared. Improved viscoelastic properties compared with the conventional PEG hydrogels are shown. Evaluation of cell viability utilizing human mesenchymal stem cells determines cytocompatibility of the nanocomposite hydrogels.  相似文献   
8.
Poly(hydroxyethyl methacrylate) (p(HEMA)) hydrogels have been proposed as promising biomaterials to replace damaged articular cartilage. A major obstacle to their use as replacement bearing tissue is their poor mechanical properties in comparison with healthy articular cartilage. The purpose of this study was to obtain p(HEMA) hydrogels with physicochemical and mechanical properties close to healthy articular cartilage, by introducing a hydrophilic monomer, namely acrylic acid (AA). Formulations of hydrogels with different amounts of hydrophilic monomer (acrylic acid, AA) were synthesized and tested: p(HEMA), p(HEMA-co-5%AA), p(HEMA-co-25%AA). The macro-mechanical tests were reproduced at nanoscale in order to verify if the superficial properties of the hydrogels are similar to the bulk ones.  相似文献   
9.
Ageing or obesity are risk factors for protein aggregation in the endoplasmic reticulum (ER) of chondrocytes. This condition is called ER stress and leads to induction of the unfolded protein response (UPR), which, depending on the stress level, restores normal cell function or initiates apoptotic cell death. Here the role of ER stress in knee osteoarthritis (OA) was evaluated. It was first tested in vitro and in vivo whether a knockout (KO) of the protein disulfide isomerase ERp57 in chondrocytes induces sufficient ER stress for such analyses. ER stress in ERp57 KO chondrocytes was confirmed by immunofluorescence, immunohistochemistry, and transmission electron microscopy. Knee joints of wildtype (WT) and cartilage-specific ERp57 KO mice (ERp57 cKO) were analyzed by indentation-type atomic force microscopy (IT-AFM), toluidine blue, and immunofluorescence/-histochemical staining. Apoptotic cell death was investigated by a TUNEL assay. Additionally, OA was induced via forced exercise on a treadmill. ER stress in chondrocytes resulted in a reduced compressive stiffness of knee cartilage. With ER stress, 18-month-old mice developed osteoarthritic cartilage degeneration with osteophyte formation in knee joints. These degenerative changes were preceded by apoptotic death in articular chondrocytes. Young mice were not susceptible to OA, even when subjected to forced exercise. This study demonstrates that ER stress induces the development of age-related knee osteoarthritis owing to a decreased protective function of the UPR in chondrocytes with increasing age, while apoptosis increases. Therefore, inhibition of ER stress appears to be an attractive therapeutic target for OA.  相似文献   
10.
This study was aimed to investigate the spatial and temporal changes of subchondral bone and its overlying articular cartilage in rats following knee immobilization. A total of 36 male Wistar rats (11–13 months old) were assigned randomly and evenly into 3 groups. For each group, knee joints in 6 rats were immobilized unilaterally for 1, 4, or 8 weeks, respectively, while the remaining rats were allowed free activity and served as external control groups. For each animal, femurs at both sides were dissected after sacrificed. The distal part of femur was examined by micro‐CT. Subsequently, femoral condyles were collected for further histological observation and analysis. For articular cartilage, significant changes were observed only at 4 and 8 weeks of immobilization. The thickness of articular cartilage and chondrocytes numbers decreased with time. However, significant changes in subchondral bone were defined by micro‐CT following immobilization in a time‐dependent manner. Immobilization led to a thinner and more porous subchondral bone plate, as well as a reduction in trabecular thickness and separation with a more rod‐like architecture. Changes in subchondral bone occurred earlier than in articular cartilage. More importantly, immobilization‐induced changes in subchondral bone may contribute, at least partially, to changes in its overlying articular cartilage. Microsc. Res. Tech. 79:209–218, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号