首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88451篇
  免费   9971篇
  国内免费   6333篇
电工技术   9807篇
技术理论   1篇
综合类   8059篇
化学工业   7023篇
金属工艺   5472篇
机械仪表   7973篇
建筑科学   3427篇
矿业工程   4120篇
能源动力   2325篇
轻工业   2608篇
水利工程   1541篇
石油天然气   6133篇
武器工业   1131篇
无线电   13459篇
一般工业技术   9921篇
冶金工业   2703篇
原子能技术   1042篇
自动化技术   18010篇
  2024年   347篇
  2023年   1354篇
  2022年   2227篇
  2021年   2724篇
  2020年   2701篇
  2019年   2393篇
  2018年   2234篇
  2017年   3386篇
  2016年   3678篇
  2015年   4247篇
  2014年   5719篇
  2013年   5462篇
  2012年   6981篇
  2011年   7512篇
  2010年   5276篇
  2009年   5578篇
  2008年   5163篇
  2007年   6105篇
  2006年   5346篇
  2005年   4306篇
  2004年   3525篇
  2003年   3222篇
  2002年   2499篇
  2001年   2041篇
  2000年   1925篇
  1999年   1593篇
  1998年   1277篇
  1997年   1311篇
  1996年   985篇
  1995年   781篇
  1994年   685篇
  1993年   476篇
  1992年   374篇
  1991年   292篇
  1990年   249篇
  1989年   238篇
  1988年   135篇
  1987年   68篇
  1986年   51篇
  1985年   43篇
  1984年   61篇
  1983年   34篇
  1982年   46篇
  1981年   20篇
  1980年   18篇
  1979年   13篇
  1978年   4篇
  1975年   6篇
  1959年   9篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Garzan oil field is located at the south east of Turkey. It is a mature oil field and the reservoir is fractured carbonate reservoir. After producing about 1% original oil in place (OOIP) reservoir pressure started to decline. Waterflooding was started in order to support reservoir pressure and also to enhance oil production in 1960. Waterflooding improved the oil recovery but after years of flooding water breakthrough at the production wells was observed. This increased the water/oil ratio at the production wells. In order to enhance oil recovery again different techniques were investigated. Chemical enhanced oil recovery (EOR) methods are gaining attention all over the world for oil recovery. Surfactant injection is an effective way for interfacial tension (IFT) reduction and wettability reversal. In this study, 31 different types of chemicals were studied to specify the effects on oil production. This paper presents solubility of surfactants in brine, IFT and contact angle measurements, imbibition tests, and lastly core flooding experiments. Most of the chemicals were incompatible with Garzan formation water, which has high divalent ion concentration. In this case, the usage of 2-propanol as co-surfactant yielded successful results for stability of the selected chemical solutions. The results of the wettability test indicated that both tested cationic and anionic surfactants altered the wettability of the carbonate rock from oil-wet to intermediate-wet. The maximum oil recovery by imbibition test was reached when core was exposed 1-ethly ionic liquid after imbibition in formation water. Also, after core flooding test, it is concluded that considerable amount of oil can be recovered from Garzan reservoir by waterflooding alone if adverse effects of natural fractures could be eliminated.  相似文献   
2.
本文主要总结了新冠疫情期间作者的电磁场理论课程在线教学经验。对比分析了录播和直播的优缺点后,选择录播教学方式。基于超星网络教学平台,展示了录播网络教学的具体措施,包括网上答疑和学习效果检查以及在线批改作业等。给出了网络教学可以为线下教学继续使用的方法和手段,为疫情结束后的正常教学提供了新的网络教学补充措施。  相似文献   
3.
Monitoring the temperature in liquid hydrogen (LH2) storage tanks on ships is important for the safety of maritime navigation. In addition, accurate temperature measurement is also required for commercial transactions. Temperature and pressure define the density of liquid hydrogen, which is directly linked to trading interests. In this study, we developed and tested a liquid hydrogen temperature monitoring system that uses platinum resistance sensors with a nominal electrical resistance of approximately 1000 Ω at room temperature, PT-1000, for marine applications. The temperature measurements were carried out using a newly developed temperature monitoring system under different pressure conditions. The measured values are compared with a calibrated reference PT-1000 resistance thermometer. We confirm a measurement accuracy of ±50 mK in a pressure range of 0.1 MPa–0.5 MPa.  相似文献   
4.
The current article focuses on mass and thermal transfer analysis of a two-dimensional immovable combined convective nanofluid flow including motile microorganisms with temperature-dependent viscosity on top of a vertical plate through a porous medium, and a model has been developed to visualize the velocity slip impacts on a nonlinear partial symbiotic flow. The governed equations include all of the above physical conditions, and suitable nondimensional transfigurations are utilized to transfer the governed conservative equations to a nonlinear system of differential equations and obtain numerical solutions by using the Shooting method. Numerical studies have been focusing on the effects of intricate dimensionless parameters, namely, the Casson fluid parameter, Brownian motion parameter, thermophoresis parameter, Peclet number, bioconvection parameter, and Rayleigh number, which have all been studied on various profiles such as momentum, thermal, concentration, and density of microorganisms. The concentration boundary layer thickness and density of microorganisms increased as the Casson fluid parameter, Brownian and thermophoresis parameters increased, whereas the bioconvection parameter, Peclet number, and Rayleigh number increased. The thermal boundary layer thickness, concentration boundary layer thickness, and density of microorganisms all decreased. The velocity distribution decreases as the Peclet number, bioconvection, and thermophoresis parameters rise but rises as the Rayleigh number, Brownian motion parameter, and Casson fluid parameter rise. These are graphed via plots along with divergent fluid parameters.  相似文献   
5.
磁声发射(MAE)是铁磁性材料磁化过程中产生的声发射信号,在构件应力检测和微观损伤检测中有着广泛的应用。针对MAE信号非稳态、复杂性、衰减性等特点,提出海鸥算法结合变分模态分解(SOA-VMD)的去噪方法,为克服海鸥算法求解过程中易陷入局部最优解问题,利用柯西变异算子产生随机迭代过程,使改进算法即柯西变异海欧算法(CVSOA)跳出早熟收敛。采用以幅值谱熵为适应度函数,优化VMD算法中分解模态个数K和二次惩戒因子α两个参数,将含噪声的MAE信号进行VMD分解重构。经仿真信号和实际检测信号分析表明,改进后的CVSOA-VMD算法全局寻优能力和去噪性能优于传统的SOA-VMD算法,降噪后的MAE信号特征值对于不同应力下均方根、偏斜度特征值的重复性更好,可靠性更高。  相似文献   
6.
《Ceramics International》2022,48(14):20062-20069
Photocatalytic N2 fixation is a promising and sustainable manufacturing process of ammonia (NH3); however, the NH3 production rate by this method is very low, thus severely restricting further application of this sustainable technology. Therefore, developing an efficient photocatalyst for N2 fixation under mild conditions is urgently required. Herein, ferroelectric Bi2WO6 materials with different surface oxygen defects were prepared, and the concentration of corresponding defects was controlled by adjusting the thermal reduction time. The abundant oxygen defects in Bi2WO6 can provide more reactive sites to promote the effective adsorption of N2, and the photogenerated charge carrier can be efficiently separated benefiting from the internal electric field. These would weaken the N2 triple bond and reduce the activation energy barrier for the conversion of N2 to NH3 under mild conditions. In the absence of sacrificial agents and cocatalysts, the optimized Bi2WO6 with oxygen defects shows an indigenous NH3 yield of 132.175 μmol·g-1·L-1·h-1, which is more than two times higher than that of the original Bi2WO6. Surprisingly, the Bi2WO6 with oxygen defects produced more than eight times NH3 (471.13 μmol·g-1·L-1·h-1) than that of the original Bi2WO6 when assisted by an external magnetic field, thus providing a new perspective for further enhancing the N2 fixation performance.  相似文献   
7.
《Ceramics International》2022,48(11):15243-15251
Green combustion was used to prepare a ferrite composition of Mg0.4Zn0.6Fe2O4 using a blend of fresh lemon juice as a natural fuel-reductant. Effect of heat treatment on phase, morphological, dielectric, and humidity sensor properties is discussed. The formation of a cubic spinel ferrite has been established by XRD-diffraction and vibrational spectroscopic studies. The experimental lattice parameter ranges from 8.3721 to 8.3631 Å. The broadening of octahedral band (υ2) in the vibrational spectra is an identification for the existence of ferrite nanoparticles in various sizes. The typical crystallite size ranges from 10.2 to 36.9 nm. Using micrographs obtained from field-effect scanning electron microscopy (FESEM), researchers observed a spherical-shaped microstructure with agglomerated nanoparticles. Dielectric investigations have shown that the current ferrite composition has typical dielectric dispersion. The highest reported value for saturation magnetization (Ms) in the present study is 33 emu/g. Magnetic behaviour is primarily influenced by magnetocrystalline anisotropy, cation distribution, and crystallite size. The existence of void spaces in the sintered samples, as well as their porous nature, rendered them suitable for humidity sensor applications. Sintered samples have good sensing capability at 900 °C. The current findings are integrated in terms of cation distribution and magnetocrystalline anisotropy, assuming fine size effects of ferrite nanoparticles.  相似文献   
8.
In this work, a new type of FeSi/FeNi soft magnetic powder core (SMPC) was successfully fabricated by coating FeNi nanoparticles on the surface of FeSi micrometer powder. The effects of different contents of FeNi nanoparticles on the micromorphology, internal structures, and soft magnetic properties of SMPCs were studied. The results show that FeNi nanoparticles adhere to the surface of FeSi powder, which can effectively fill the air gap between FeSi powder and is beneficial to the compaction of the powder cores during the pressing process. Thus, the density of the SMPCs is increased. Compared to FeSi SMPCs, the comprehensive soft magnetic properties of FeSi/FeNi SMPCs have been greatly improved. When adding 15 wt% FeNi nanoparticles, the SMPCs exhibit excellent magnetic properties with high effective permeability (increased by 43.8 %) and low core loss (decreased by 22.1 %). The high performance FeSi/FeNi SMPCs prepared in this work are expected to be widely used in power choke coils, uninterruptible power supplies, and boosts and inverter inductors.  相似文献   
9.
《Ceramics International》2022,48(11):15043-15055
This work reports magnetic permeability and ammonia gas sensing characteristics of La3+ substituted Co–Zn nano ferrites possessing chemical formula Co0.7Zn0.3LaxFe2-2xO4 (x = 0–0.1) synthesized by a sol-gel route. Refinement of X-ray diffraction (XRD) patterns of the ferrite powders by the Rietveld technique has revealed the creation of single-phase spinel structure. The tenancy of constituent cations at tetrahedral/octahedral sites was obtained from the refinement of XRD. The crystallite sizes calculated from the W–H method vary from 20 to 24 nm. The scanning electron microscope (SEM) profiles of the ferrite samples were analyzed for the morphological details. The energy dispersive X-ray analysis (EDAX) patterns of the samples were obtained to test the elemental purity of the ferrites within their stoichiometry. The transmission electron microscope (TEM) image of the ferrite (x = 0.1) exhibits the spherical and oval shaped particles with a mean size of 20 nm. Fourier transform infra-red (FTIR) spectra were analyzed to confirm the superseding of La3+ cations at octahedral sites. The Brunauer-Emmett-Teller (BET) analysis of nitrogen adsorption-desorption isotherms of the ferrites was performed to investigate the porous structure and to determine the surface area of the nanocrystalline ferrites. The oxidation states of the constituent ions were confirmed by means of X-ray photoelectron spectroscopy (XPS). The complex permeability as a function of frequency was studied to explore the effects of structural parameters on the magnetic behaviour of the ferrites. Analysis of gas sensing properties of the ferrites have proved that the Co–Zn–La ferrite with controlled La composition can be utilized as an effective ammonia gas sensing material in commercial gas sensors.  相似文献   
10.
The uniaxial tensile test of the 5A06-O aluminium–magnesium (Al–Mg) alloy sheet was performed in the temperature range of 20–300 °C to obtain the true stress–true strain curves at different temperatures and strain rates. The constitutive model of 5A06-O Al–Mg alloy sheet with the temperature range from 150 to 300°C was established. Based on the test results, a unique finite element simulation platform for warm hydroforming of 5A06-O Al–Mg alloy was set up using the general finite element software MSC.Marc to simulate warm hydroforming of classic specimen, and a coupled thermo-mechanical finite element model for warm hydroforming of cylindrical cup was built up. Combined with the experiment, the influence of the temperature field distribution and loading conditions on the sheet formability was studied. The results show that the non-isothermal temperature distribution conditions can significantly improve the forming performance of the material. As the temperature increases, the impact of the punching speed on the forming becomes particularly obvious; the optimal values of the fluid pressure and blank holder force required for forming are reduced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号